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~ plotted for all values of a system parameter. The roots correspondmg to a particular
~--value-of this-parameter can then be located on the resulting graph. Note that the pa= - -
.rameter is usually the gain, but any other variable of the open-loop transfer function

may be used.(See Chapter 7.) Unless otherwise stated, we shall assume that the gain
of the open-loop transfer function is the parameter to be varied through all values,
from zero to infinity.

By using the root-locus method the de31gner can predict the effects on the location
of the closed-loop poles. of varying the gain value or adding open-loop poles and/or
open-loop zeros. Therefore, it is desired that thé designer have a good understanding of

the method for generating the root loci of the closed-loop system, both by hand and by~

use of a computer software like MATLAB A

Root-Locus Method. The basic idea behind the root-locus method is that the
values of s that make the transfer function around the loop equal ~1 must satisfy the
characteristic equation of the system.

The root locus is the locus of roots of the characteristic equatxon of the closed-loop
system as a specific parameter (usually, gain X)) is varied from zero to infinity, giving
the method its name. Such a plot clearly shows the contnbuuons of each open-loop pole
or zero to the locations of the closed-loop poles..

In desxgmng a linear control system, we find that the root-locus method proves quite

useful since it indicates the\mariner in which the open-loop poles and zeros should be

modified so that the response meets system performance specifications. This method is

particularly suited to obtaining approximate results very quickly.
Because generating the root loci by use of MATLAB is very simple, one may think

sketching the root loci by hand is a waste of time and effort. However, experience in

sketching the root loci by hand is invaluable for interpreting computer-generated root
loci, as well as for getting a rough idea of the root loci yexy quickly.

- By using theroot-locus method, it is possible to ine the value of the loop
gain K that will make the damping ratio of the do t closed-loop poles as pre-
scribed. If the location of an open-loop pole or zerd'1§4 system variable, then the

- root-locus method suggests the way to choose the location of an open-loop pole or
Zero.

Outline of the Chapter. This chapter introduces the basic concept of Ehe root-
locus method and presents useful rules for graphically constructing the root 10c1, as well

as the generation of root loci with MATLAB.

The outline of the chapter is as follows: Section 6-1 has presented an introduction
to the root-locus method. Section 6-2 details the concepts underlying the root-locus
method and presents the general procedure for sketching root loci using illustrative
examples. Section 6-3 summarizes general rules for constructing root loci. (If the de-
signer follows the general rules for constructing the root loci, sketching the root loci
for a given system will become a simple matter.) Section 64 discusses generating
root-locus plots with MATLAB. Section 6-5 treats a special case when the closed-
loop system has positive feedback. Section 6-6 treats conditionally stable systems. Fi-
nally, Section 6-7 extends the root-locus method to treat closed- loop systems with

transport lag.
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6-2 ROOT-LOCUS PLOTS

Angle and Magnitude Conditions. Consider the system shown in Figure 6-.-1.Tﬁe

closed-loop transfer function is -
c (S) G(s)
R(s) © 1+ G{s)H(s)

The characteristic equation for this closed-loop system is obtained by setting the
denominator of the nght-hand side of Equation (6—-1) equal to zero. ‘That is,

1+ G(s)H(s) =0

~ (6-1)

B N | |
- G(s)H(s) = -1 ' (6-2)

Here we assume that G(s)H (s) is a ratio of polynomials in s. [Later, in Section 6—7 we
extend the analysis to the case when G(5)H () involves the transport lag e’“] Since

G(s)H(s) is a complex quantity, Equation (6-2) can be split into two equations by equat--

ing the angles and magnitudes of both sides, respecuvely, to obtain the follovmng

Angle condition: '
NS [Ge)HE) = £180°(2k + 1) (k=0,1,2,...) (6-3)
Magnitude condition: . v
™~ Gs)H(s)| = (6-4)

The values of s that fulfill both the angle and magmtude conditions are the roots of the
characteristic equation, or the closed-loop poles. A locus of the points in the complex
plane satisfying the angle condition alone is the root locus. The roots of the character-
i eq::;gon (the closed-loop poles) corresponding to a given value of the gain can be

e conditions to obtain the closed-loop poles are presented later in this section.
In many cases, G (s)H (s) involves a gain parameter K, and the characteristic equa-
tion may be written as

K(s + 2)(s + 2) (s + 2)
| (s + p)s + po) (s + pa)
Then the root loci for the system are the loci of the closed-loop poles as the gain K is
varied from zero to infinity.

Note that to begin sketching the root loci of a system by the root-locus method we
must know the location of the poles and zeros of G(s)H (). Remember that the angles

TN =0

R(s) T C(s)
- Gls) = —>-

F igure 6-1 . ’ H(s)
Control systém. '
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Figure 6-2

(a) and (b) Diagrams
showing angle
measurements from
open-loop poles and
open-loop zero to
test point s.
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of the complex quantities originating from the open-loop poles and open-loop zeros to '
the test point s are measured in the counterclockwise direction. For example, if G(s)H((s)

is given by
K(s +z)
(s + po)(s + po)s + pa)s + pa)
where —p, and —p; are complex-conjugate poles, then the angle of G(s)H (s) is

- [G(s)H(s) = ¢y — 0, — 8, — 65 —‘94

G(s)H(s) =

" where ¢, 6,, 6,, 65, and 8, are measured counterclockwise as shown in Figures 6-2(a)

and (b). The magnitude of G(s)H(s) for this systemis
| KB,

IGs)H(s)] = YW

where A,, Az, As, Ay, and By are the magnitudes of the complex quantities s + p,

s+ py, s + p3, 5 + ps,and s + z,, respectively, as shown in Figure 6-2(a).

Note that; because the open-loop complex-conjugate poles and complex-conjugate
zeros, if any, are always located symmetrically about the real axis, the root loci are always
symmetrical with respect to this axis. Therefore, we only need to construct the upper half
of the root loci and draw the mirror image of the upper half in the lower-half s plane.

Nlustrative Examples. In what follows, two illustrative examples for constructing
root-locus plots will be presented. Although computer approaches to the construction
of the root loci are easily available, here we shall use graphical computation, combined
with inspection, to determine the root loci upon which the roots of the characteristic
equation of the closed-loop system must lie. Such a graphical approach will enhance
understanding of how the closed-loop poles move in the complex plane as the open-
loop poles and zeros are moved. Although we employ only simple systems for illustrative
purposes, the procedure for finding the root loci is no more complicated for higher-

order systems.
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EXAMPLE 6-1

Figure 6-3
Control system.

The first step in the procedure for constructing a root-locus plot is to seek out the
loci of possible roots using the angle condition. Then, if necessary, the loci can be scaled,
or graduated, in gain using the magnitude condition.

Because graphical measurements of angles and magnitudes are involved in the analy-
sis, we find it necessary to use the same divisions on the abscissa as on the ordinate axis
when sketching the root locus on graph paper.

Consider the system shown in Figure 6-3. (We assume that the value of gain K is nonnegative.)
For this system, ‘
—r
s(s+ (s +2)’
Let us sketch the root-locus‘plot and then determine the value of K such that the damping ratio

¢ of a pair of dominant complex-conjugate closed-loop poles is 0.5.
For the given system, the angle condition becomes

G(s) = H(s) =1

K.
[G(s) = s(s +1)(s +2)
=~fs~ [s+1~ [s+2

=+180°(2k +1) (k=0,1,2,...)
The magnitude condition is

K
s(s + 1)(s + 2)

A typical procedure for sketching the root-locus plot is as follows:

IG(s)] = =1

1. Determine theé root loci on the real axis. The first step in constructing a root-locus plot is to
locate the open-loop poles,s = 0,5 = —1,and s = -2, in the complex plane. (There are no open-
loop zeros in this system.) The locations of the open-loop poles are indicated by crosses. (The lo-
cations of thé open-loop zeros in this book will be indicated by small circles.) Note that the starting
points of the root loci (the points corresponding to K = 0) are open-loop poles. The number of
individual root loci for this system is three, which is the same as the number of open-loop poles.

- . To determine the root loci on the real axis, we select a test point, s. If the test point is on the
positive real axis, then '

[s=[s+ =[s+2=0°
This shows that the angle condition cannot be satisfied. Hence, there is no root locus on the positive
real axis. Next, select a test point on the negative real axis between 0 and —1. Then

[s = 180°, [s+1=[s+2=0""
Thus : :
—[s— [s+1— [s+2=-180

R(s) X )
 Ser D) (s +2) >
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and the angle condition is satisfied. Therefore, the portion of the negative real axis between 0 and
—1 forrus a portion of the root locus. If a test point is selected between —1 and —2, then _

[s=[s+1=180°, [s+2=0°
and

—[s— [s+1~ [s+2=-360°

It can be seen that the angle condition is not satisfied. Therefore, the negative real axis from —1.. . .

to —2 is not a part of the root locus. Similarly, if a test point is located on the negative real axis from
-2 to —oo, the angle condition is satisfied. Thus, root loci exist on the negative real axis between
0 and ~1 and between —2 and —oco.

2. Determine the asymptotes of the root loci. The asytﬁptotes of the root loci as s approaches
infinity can be determined as follows: If a test point s is selected very far from the origin, then

. = 1. ... S =1 il
len;lQG(S) s-{)r{olo s(s + 1)(,5‘ + 2) sl-l»nclo 3
and the angle condition becomes ’

=3 /s = £180°(2k + 1) (k=0,12,...)

or
+180°(2k + 1)
3

Since the angle repeats itself as k& is varied, the distinct angles for the asymptotes are determined
as 60°, —60°, and 180°. Thus, there are three asymptotes. The one having the angle of 180° is the

negative real axis. :
Before we can draw these asymptotes in the complex plane, we must find the point where

they intersect the real axis. Since

Angles of asymptotes = (k=0,1,2,...)

N . S
T os(s + 1)(s +2)

if a test point is located very far from the origin, then G(s) may be written as
Kk
$3 4+ 35 + -

G(s)

G(s) =

For large values of s, this last equation may be approximated by

G(s) = (s_fi)_ (6-5)

A root-locus diagram of G(s) given by Equation (6-5) consists of three straight lines. This can be
seen as follows: The equation of the root locus is

/GTKW = £180°(2k + 1)

~3/s + 1 = £180°(2k + 1)

or

which can be written as

/s +.1=+60°(2k + 1)
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Figure 64
Three asymptotes.
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By substituting s = o + jo into this last equation, we obtain
[o + jo + 1 ==160°(2k + 1)
or .

;@
oc+1

tan™ = 60°, = —60°, 0°

Taking the tangent of both sides of this last equation,

©__\3 Vi, 0

o+ 1
which can be written as
w [4)] R
+1—-——F==0, +1+—=0, =0
7 V3 7 V3 @

These three equations represent three straight lines, as shown in Figure 6-4.The three straight lines
shown are the asymptotes. They meet at point s = —1. Thus, the abscissa of the intersection of
the asymptotes and the real axis is obtained-by setting the denominator of the right-hand side of
Equation (6-5) equal to zero and solving for s. The asymptotes are almost parts of the root loci
in regions very far from the origin.

3. Determine the breakaway point. To plot root loci accurately, we must find the breakaway
point, where the root-locus branches originating from the poles at 0 and —1 break away (as K is

increased) from the real axis and move into the complex plane. The breakaway point corresponds

to a point in the s plane where multiple roots of the characteristic equation occur.
A simple method for finding the breakaway point is available. We shall present this method

in the following: Let us write the characteristic equation as :
- f(s) = B(s) + KA(s) =0 (6-6)
Jjo A
i3

o+l 4+ =0

3
-3
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where A(s) and B(s) do not contain K. Note that f(s) = 0 has multiple roots at points where
df(s) ) S B
Tds

This can be seen as follows: Suppose that f(s) has multiple roots of order ». Then f(s) may be writ-
ten as

f()=(- s1)f(s - sz)(s - s,,)
If we differentiate this equation with respect to s and set s = 51, then we get
- dfls)
&5 |oms =.0 (6—7)

This means that multiple roots of f(s) will satlsfy Equation (6-7). From Equation (6-—6) we
obtain

df(s
f( ) = B'(s ) + KA'(s) = (6-8)
where
, (S) , dB (S)
A(s) = . B(s)=
The particular value of K that will yield muluple roots of the characteristic equatlon is obtained
from Equation (6-8) as

B(s)
A Alfs)
If we substitute this value of K into Equation (6-6), we get

e =B - AE; Als) =0

K=

or
B(s)A'(s) = B'(s)A(s) = 0 (6-9)

" If Equation (6-9) is solved for s, the points where multiple roots occur can be obtained. On the

other hand, from Equation (6-6) we obtain
_B(s)
T A(s)

and

dK _ B'(s)A(s) — B(s)A'(s)
ds ' AXYs)

If dK /ds is set equal to zero, we get the same equation as Equation (6-9). Therefore, the break-

away points can be simply determined from the roots of

It should bé noted that not all the solutions of Equation (6-9) or of dK /a’s 0 correspond to

. actual breakaway points. If a point at which dK /ds = 01is on a root locus, it is an actual breakaway

or break-in point. Stated differently, if at a point at which dK /ds = 0 the value of X takes a real
positive value then that point is an actual breakaway or break-in point.
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For the present example, the characteristic equation G(s) + 1 = Ois given by

K

il ry T1T0

or ;
K = —(s* + 35 + 2s)

By setting dK /ds = 0, we obtain

dK
—=—-3s+6s+2)=0
— (3s* + 6s + 2)
or
s = —04226, s=-15774
Since the breakaway point must lie on a root locus between 0 and —1, it is clear that s = —0.4226

. corresponds to the actual breakaway point. Point s = —1.5774 is not on the root locus. Hence, this
point is not an actual breakaway or break-in point. In fact, evaluation of the values of K corre-
“sponding to s = —0.4226 and s = —1.5774 yields
' K = 0.3849, for s = —0.4226
= —0.3849, fors = -15774
4. Determine the points where the root loci cross the imaginary axis. These points can be found

by use of Routh’s stability criterion as follows: Since the characteristic equation for the present
system is

S+35%+25+ K=0
the Routh array becomes

s 1 2
£ 3 K
4 6-K

3
s K

The value of K that makes the s' term in the first column equal zero is K = 6.The crossing pomts
on the imaginary axis can then be found by solving the auxiliary equation obtained from the 52
row; that is,
32+ K=35"+6=0
which yields
s =%jV2

The frequencies at the crossing points on the imaginary axis are thus @ = V2. The gain value
corresponding to the crossing points is K = 6.
An alternative approach is to let s = jw in the characteristic equation, equate both the real

part and the imaginary part to zero, and then solve for w and K. For the present system, the char- '

acteristic equation, with s = jw, is

(jo)* + 3(ju)? + 2(jw) + K =0
or
(K — 30)2) + j(2w - w") =0

Equating both the real and imaginary parts of this last equation to zero, we obtain

K—-3?=0 20—& =
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Figure 6-5

Construction of root
locus.

Figure 66
Root-locus plot.
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1

‘from which
' w=+V2, K=6 o w=0K=0

Thus, root loci cross the imaginary axis at w = £V?2, and the value of K at the crossmg points is 6.
Also, a root-locus branch on the real axis touches the imaginary axis at w = 0. -

5. Choose a test point in the broad neighborhood of the jw axis and the origin, as shown in
Figure 6-5, and apply the angle condition. If a test point is on the root loci, then the sum of the
three angles, 8, + 6, + 6;, must be 180°. If the test point does not satisfy the angle condition,
select another test point until it satisfies the condition. (The sum of the angles at the test point will
indicate which direction the test point should be moved.) Continue this process and locate a
sufficient number of points satisfying the angle condition.

6. Draw the root loci, based on the information obtained in the foregoing steps, as shown in

Figure 6-6.
Joj -
®
Y
/-

/¥

K=1.0383 60/ g
.y l / | x=1.0383

P\
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EXAMPLE 6-2

Figure 6-7
Control system.

a2

7. Determine a pair of dominant complex-conjugate closed-loop poles such that the damping
ratio ¢ is 0.5. Closed-loop poles with { = 0.5 lie on lines passing through the origin and making
the angles +cos™'{ = xcos™'0.5 = +60° with the negative real axis. From Figure 6-6,such closed-
loop poles having { = 0.5 are obtained as follows: '

s, = —0.3337 + jO.5780, s, = —0.3337 — jO.5780

The value of X that yields such poles is found from the magnitude condition as follows:
K = |s(s + 1)(s + 2)ls=—0m37+j05780
= 10383

Using this value of X, the third pole is found at s = —2.3326. .
Note that, from step 4, it can be seen that for K = 6 the dominant closed-loop poles lie on the
imaginary axis at s = V2. With this value of K, the system will exhibit sustained oscillations.

“For K > 6, the dominant closed-loop poles lie in the right-half s plane, resulting in an unstable

system.

Finally, note that, if necessary, the root Joci can be easily graduated in terms of K by use of the
magnitude condition. We simply pick out a point on a root locus, measure the magnitudes of the
three complex quantities s, s + 1,and s + 2, and multiply these magnitudes; the product is equal
to the gain value X at that point, or B

_ Isjels+1-|s+2/=K
Graduation of the root loci can be done easily by use of MATLAB. (See Section 6-4.)

'In this example, we shall sketch the root-locus plot of a system with complex-conjugate open-

loop poles. Consider the system shown in Figure 6-7. For this system,

G(s) = LI .
s+25+3°

where K = 0. It is seen that G(s) has a pair of complex conjugate poles at
s=-1+jV2, s=-1-jV2

A typical procedure for sketching the root-locus plot is as follows:

1. Determine the root loci on the real axis. For any test point s on the real axis, the sum of the
angular contributions of the complex-conjugate poles is 360°, as shown in Figure 6-8. Thus the net
effect of the complex-conjugate poles is zero on the real axis. The location of the root locus on the
real axis is determined from the open-loop zero on the negative real axis. A simple test reveals that
a section of the negative real axis, that between —2 and —oo, is a part of the root locus. It is noted
that, since this locus lies between two zeros (at s = —2 and 5 = —00), it is actually a part of two
root loci, each of which starts from one of the two complex-conjugate poles. In other words,two
root loci break in the part of the negative real axis between ~2 and —oo. ’

R(s) K(s+2) : as)
- s2+2s+3 o
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Figure 6-8
Determination of the
root locus on the real
axis.

- —jV2

Since there are two open-loop poles and one zero, there is one asymptote, which coincides with
the negative real axis.

2. Determine the angle of departure from the complex-conjugate open-loop poles. The pres-
ence of a pair of complex-conjugate open-loop poles requires the determination of the angle of
departure from these poles. Knowledge of this angle is important since the root locus near a com-
plex pole yields information as to whether the locus originating from the complex pole migrates
toward the real axis or extends toward the asymptote.

Referring to Figure 6-9, if we choose a test point and move it in the very vicinity of the com-
plex open-loop pole at s = --p,, we find that the sum of the angular contributions from the pole
at s = p,and zero at s = —z, to the test point can be considered remaining the same. If the test
point is to be on the root locus, then the sum of ¢, —6;, and ~6; must be +180°(2k + 1), where
k = 0,1,2,.... Thus, in the example,

¢ — (6, + 63) = £180°(2k + 1)
or _
6, = 180° — 6; + ¢| = 180° — 6, + ¢,
The angle of departure is then ’
0,.= 180° — 0, + ¢, = 180° — 90° + 55° = 145°

jo

Figure 6-9 -
Determination of the 2

angle of departure.
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Root-locus plot.

Since the root locus is symmetric about the real axis, the angle of departure from the pole at
§ = —p,is —145°

3. Determine the break-in point. A break-in point exists where a pair of root-locus branches
coalesces as K is increased. For this problem, the break-in point can be found as follows: Since
s2+25+3

K== s+ 2

we have .
dK (254 2)(s +2) = (5" + 25 + 3)

ds (s +2)?

which gives _
S2+45+1=0
or
s = ~3.7320 or s = —0.2680

Notice that point s = —3.7320 is on the root locus. Hence this point is an actual break-in point.
(Note that at point 5 = —3.7320 the corresponding gain value is K = 5.4641.) Since point
s = —{0.2680 is not on the root locus, it cannot be a break-in point. (For point s = —0.2680, the cor-
responding gain value is K = —1.4641.) '

4. Sketch a root-locus plot, based on the information obtained in the foregoing steps. To
determine accurate root loci, several points must be found by trial and error between the break-
in point and the complex open-loop poles. (To facilitate sketching the root-locus plot, we should
find the direction in which the test point should be moved by mentally summing up the changes
on the angles of the poles and zeros.) Figure 6-10 shows a complete root-locus plot for the system
considered. '

»w :
£=0.7 line 794

_
145° /
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The value of the gain K at any point on root locus can be found by applying the magnitude

. condition or by use_of MATLAB.(see.Section 6-4). For example, the value of X-at which the

complex-conjugate closed-loop poles have the damping ratio £ = 0.7 can be found by locating the
roots, as shown in Figure 6-10, and computing the value of K as follows:

(s +1-jV2)(s + 1 + jV2)|

=134
s+2 . l:=—1.67+/’1.70

Or use MATLARB to-find the value of K. (See Section 6-4.)

It is noted that in this system the root locus in the complex plane is a part of a circle. Such a
circular root locus will not occur in most systems. Circular root loci may occur in systems that in-
volve two poles and one zero, two poles and two zeros, or one pole and two zeros, Even in such
systems, whether circular root loci occur depends on the locations of poles and zeros involved.

To show the occurrence of a circular root locus in the present system, we need to derive the
equation for the root locus. For the present system, the angle condition is

[s+2~ [s+1—jV2~-[s+1+jV2=x180°(2k + 1)
If s = ¢ + jw.is substituted into this last equation, we obtain
[o+2+jo— [o+1+jo— V2= [oc+]1+jo+ VD =+180°(2k + 1)

which can be written as
tan™! ( ©
o+ 2

tan™ (9—:—\[3) + tan™ ('—";L\—/:Z-) = tan“(a 2 ) + 180°(2k + 1)

) - tan“‘(%__——\/i) - tar.f1 (%%) = +180°(2k + 1)

or

o+1 +1 +2
Taking tangents of both sides of this last equation using the relationship

tanx * tany - (6-10)

.tan(x )= 1 F tanxtany

we obtain

tan[tan‘1 (%—\{2-) + tan™ (%%/—2_-” = tan[tan;‘(a :’_ 2) + 180°(2k + 1)]

or
w—\/f+w+\/i w

o+1 o+1 o'+2:kO
@

1_(w—\/§)(m+\/§) 1
o+1 o+1

X0

o+2
which can be simplified to
2w(o + 1) ®
(o’+1)2-—(w2~2)=0'+2

or
wf(c+2)+e®-3]=0

This last equation is equivalent to
=0 or (o+2P+e= (V3
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These two equations are the equations for the root loci for the present system. Notice that the first
equation, @ = 0, is the equation for the real axis. The real axis from s = —2 to s = —oo corre-
sponds to a root locus for K = 0.The remaining part of the real axis corresponds to a root locus
when K is negative. (In the present system, K is nonnegative.) The second equation for the root
locus is an equation of a circle with center at 0 = =2, w = 0 and the radius equal to V/3.That part

. of the circle to the left of the complex-conjugate poles corresponds to a root locus for K = 0.

The remaining part of the circle corresponds to a root locus when K is negative.

It is important to note that easily interpretable equations for the root locus can be derived for
simple systems only. For complicated systems having many poles and zeros, any attempt to derive
equations for the root loci is discouraged. Such derived equations are very complicated and their
configuration in the complex plane is difficult to visualize.

6-3 SUMMARY OF GENERAL RULES
FOR CONSTRUCTING ROOT LOCI

Figure 6-11
Control system.

For a complicated system with many open-loop poles and zeros, constructing a root-
locus plot may seem complicated, but actually it is not difficult if the rules for constructing
the root loci are applied. By locating particular points and asymptotes and by comput-
ing angles of departure from complex poles and angles of arrival at complex zeros, we
can construct the general form of the root loci without difficulty.

Some of the rules for constructing root loci were given in Section 6-2. The purpose
of this section is to summarize the general rules for constructing root locj of the system
shown in Figure 6-11. While the root-locus method is essentially based on a trial-and-
error technique, the number of trials required can be greatly reduced if we use these rules.

General Rules for Constructing Root Loci. We shall now summarize the general
rules and procedure for constructing the root loci of the system shown in Figure 6-11.
First, obtain the characteristic equation

N~ 1+ G(s)H(s) =0

Then rearrange this equation so that the parameter of interest appears as the multiply-
ing factor in‘the form o
Kls + 2)(s + ) (s + 2

(s + p)(s + p2) (s + p)

In the present discussions, we assume that the parameter of interest is the gain X, where
K > 0. (If K < 0, which corresponds to the positive-feedback case, the angle condi-
tion must be modified. See Section 6-5.) Note, however, that the method is still appli-
cable to systems with parameters of interest other than gain. (See Section 7-6.)

=0 (6-11)

—_— R(s) C(s)
G(s) -

H(s) e
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L. Locate the poles and zeros of G(s) H (s) on the s plane. The root-locus branches start

" from open-lo6p poles and terriinate dt zevos (finite zeros of zeros at infinity). From the

factored form of the open-loop transfer function, locate the open-loop poles and zeros
in the s plane. [Note that the open-loop zeros are the zeros of G(s)H(s), while the
closed-loop zeros consist of the zeros of G(s) and the poles of H(s).]

" Note that the root loci are symmetrical about the real axis of the s plane, because the
complex poles and complex zeros occur only in conjugate pairs.

A root-locus plot will have just as many branches as there are roots of the characteris-
tic equation. Since the number of open-loop poles generally exceeds that of zeros, the num-
ber of branches equals that of poles. If the number of closed-loop poles is the same as the
number of open-loop poles, then the number of individual root-locus branches terminat-
ing at finite open-loop zeros is equal to the number m of the open-loop zeros. The remaining
n — m branches terminate at infinity (n — m implicit zeros at infinity) along asymptotes.

If we include poles and zeros at infinity, the number of open-loop poles is equal to
that of open-loop zeros. Hence we can always state that the root loci start at the poles
of G(s)H(s) and end at the zeros of G(s)H(s), as K increases from zero to infinity,
where the poles and zeros include both those in the flmte s plane and those at infinity.

2. Determine the root loci on the real axis. Root loci on the real axis are determined
by open-loop poles and zeros lying on it. The complex-conjugate poles and zeros of the
open- -loop transfer function have no effect on the location of the root loci on the real
axis because the angle contribution of a pair of complex-con;ugate poles or zeros is 360°
on the real axis. Each portion of the root locus on the real axis extends over a range

. from a pole or zero to another pole or zero. In constructing the root loci on the real

axis, choose a test point on it. If the total number of real poles and real zeros to the right
of this test point is odd, then this point lies on a root locus. If the open-loop poles and
open-loop zeros are simple poles and simple zeros, then the root locus and its comple-

_ ment form alternate segments along the real axis.

3. Determine the asymptotes of root loci. 1f the test point s is located far from the origin,
then the anglé of each complex quantity may be considered the same. One open-loop zero
and one open-loop pole then cancel the effects of the other. Therefore, the root loci for very
large values of s must be asymptotic to straight lines whose angles (slopes) are given by
+180°(2k + 1)

—— (k=0,1,2,...)

Angles of asymptotes =

where n = number of finite poles of G(s)H(s)

number of finite zeros of G(s)H(s)

It

m

Here, k = 0 corresponds to the asymptotes with the smallest angle with the real axis. Al- -
though k assumes an infinite number of values, as & is increased the angle repeats itself,

and the number of distinct asymptotes is n — m.
All the asymptotes intersect on the real axis. The point at which they do so is obtained

as follows: If both the numerator and denominator of the open-loop transfer function
are expanded, the result is
K[s'" +(zy +z++ Z)S™ T+ e+ zlzz“-z,,,]

S+ (po o+ prt o P e oy P

G(s)H(s) =

Chapter 6 / Root-Locus Analysis



If a test point is located very far from the origin, then by dividing the denominator by
the numerator, it is possible to write G(s)H(s) as

K

G(s)H(s) = | PR S M| s
or ‘
- G(s)H(s) = X (6-12)
[s St otp) -t nt ot zm)]"“”’
: n—m

The abscissa of the intersection of the asymptotes and the real axis is then obtained by
setting the denominator of the right-hand side of Equation (6-12) equal to zero and
solving for s, or : .

tpt ot p)— (gt t 2z,
— PR pn)_rff i Zn) (6-13)

[Example 6-1 shows why Equation (6~13) gives the intersection.] Once this intersection
.is determined, the asymptotes can be readily drawn in the complex plane.
It is important to note that the asymptotes show the behavior of the root loci for
|s| > 1.A root locus branch may lie on one side of the corresponding asymptote or may
cross the corresponding asymptote from one side to the other side.

4. Find the breakaway and break-in points. Because of the conjugate symmetry of
the root loci, the breakaway points and break-in points either lie on the real axis or
occur in complex-conjugate pairs. :

If a root locus lies between two adjacent open-loop poles on the real axis, then there
exists at least one breakaway point between the two poles. Similarly, if the root locus lies
between two adjacent zeros (one zero may be located at —co) on the real axis, then there.
always exists at least one break-in point between the two zeros. If the root locus lies be-
tween an open-loop pole and a zero (finite or infinite) on the real axis, then there may
exist no breakaway or break-in points or there may exist both breakaway and break-in
points. : '

Suppose that the characteristic equation is given by

B(s) + KA(s) =0
The breakaway points and break-in points correspond to multiple roots of the charac-
teristic equation. Hence, as discussed in Example 6-1, the breakaway and break-in points
can be determined from the roots of '

dK __B()AG) = BOAT) _ (6-16)

ds A(s)
where the prime indicates differentiation with respect to s. It is important to note that
the breakaway points and break-in points must be the roots of Equation (6-14), but not
all roots of Equation (6-14) are breakaway or break-in points. If a real root of Equation
(6-14) lies on the root-locus portion of the real axis, then it is an actual breakaway or
break-in point. If a real root of Equation (6-14) is not on the root-locus portion of the
real axis, then this root corresponds to neither a breakaway point nor a break-in point.
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If tworoots s = 5y and 5 = —s; of Equation (6-14) are a complex-conjugate pair and if
it is not certain whether they are on root loci, then it is necessary to check the corre-

~ sponding K value. If the value of K corrésponding to atoot s = s, of dK/ds = 0is pos-

itive, point s = s, is an actual breakaway or break-in point. (Since X is assumed to be
nonnegative, if the value of X thus obtained is negative, or a complex quantity, then
point s = sy is neither a breakaway nor break-in point.)

S. Determine the angle of departure (angle of arrival) of the root locus from a com-
plex pole (at a complex zero). To sketch the root loci with reasonable accuracy, we must
find the directions of the root loci near the complex poles and zeros. If a test point is cho-
sen and moved in the very vicinity of a complex pole (or complex zero), the sum of the
angular contributions from all other poles and zeros can be considered to remain the
same. Therefore, the angle of departure (or angle of arrival) of the root locus from a
complex pole (or at a complex zero) can be found by subtracting from 180° the sum of
all the angles of vectors from all other poles and zeros to the complex pole (or complex
zero) in question, with appropriate signs included.

Angle of departure from a complex pole = 180°
— (sum of the angles of vectors to a complex pole in question from other poles)
+ (sum of the angles of vectors to a complex pole in question from zeros)

Angle of arrival at a complex zero = 180°
— (sum of the angles of vectors to a complex zero in questlon from other zeros)

+ (sum of the angles of vectors to a complex zero in question from poles)
The angle of depéxiure is shown in Figure 6-12.

6. Find the points where the root loci may cross the imaginary axis. The points where
the root loci intersect the jw axis can be found easily by (a) use of Routh’s stability cri-
terion or (b) letting s = jw in the characteristic equation, equating both the real part and
the imaginary part to zero, and solving for w and K. The values of » thus found give the
frequencies at which root loci cross the imaginary axis. The K value corresponding to
each crossing frequency gives the gain at the crossing point.

1. Taking a series of test points in the broad neighborhood of the origin of the s plane,
sketch the root loci. Determine the root loci in the broad neighborhood of the jw axis
and the origin. The most important part of the root loci is on neither the real axis nor
the asymptotes, but the part in the broad neighborhood of the jw axis and the origin. The

jwﬂ

~<l__Angle of
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If two roots s = s; and s = —s; of Equation (6-14) are a complex-conjugate pair and if
it is not certain whether they are on root loci, then it is necessary to check the corre-

“sponding K value. If the value of K cotresponding to aroot s = s; of dK/ds = 0is pos-

itive, point s = s, is an actual breakaway or break-in point. (Since X is assumed to be
nonnegative, if the value of X thus obtained is negative, or a complex quantity, then
point s = sy is neither a breakaway nor break-in point.)

S. Determine the angle of departure (angle of arrival) of the root locus from a com-
plex pole (at a complex zero). To sketch the root loci with reasonable accuracy, we must
find the directions of the root loci near the complex poles and zeros. If a test point is cho-
sen and moved in the very vicinity of a complex pole (or complex zero), the sum of the
angular contributions from all other poles and zeros can be considered to remain the
same. Therefore, the angle of departure (or angle of arrival) of the root locus from a
complex pole (or at a complex zero) can be found by subtracting from 180° the sum of
all the angles of vectors from all other poles and zeros to the complex pole (or complex
zero) in question, with appropriate signs included.

Angle of departure from a complex pole = 180° .
— (sum of the angles of vectors to a complex pole in question from other poles)
+ (sum of the angles of vectors to a complex pole in question from zeros)

Angle of arrival at a complex zero = 180°
— (sum of the angles of vectors to a complex Zero in questmn from other zeros)

+ (sum of the angles of vectors to a complex zero in question from poles)
The angle of dep:ir'fure“is shown in Figure 6-12.

6. Find the points where the root loci may cross the imaginary axis. The points where
the root loci intersect the Jw axis can be found easily by (a) use of Routh’s stability cri-
terion or (b) letting s = jw in the characteristic equation, equating both the real part and
the imaginary part to zero, and solving for w and K. The values of w thus found give the
frequencies at which root loci cross the imaginary axis. The K value corresponding to
each crossing frequency gives the gain at the crossing point.

7. Taking a series of test points in the broad neighborhood of the origin of the s plane,
sketch the root loci. Determine the root loci in the broad neighborhood of the jw axis
and the origin. The most important part of the root loci is on neither the real axis nor
the asymptotes, but the part in the broad neighborhood of the jw axis and the origin. The

j"’ﬂ

-} Angle of
departure
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(a) Control system
.with velocity
feedback; (b) and
(c) modified block
diagrams. -
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Cancellation of Poles of G(s) with Zeros of H(s). It is important to note that

-______ifthe denominator of G(s) and the numerator of H (s) involve common factors then the

corresponding open-loop poles and zeros will cancel each other, reducing the degree of
the characteristic equation by one or more. For example, consider the system shown in
Figure 6-14(a). (This system has velocity feedback.) By modifying the block diagram of
Figure 6-14(a) to that shown in Figure 6-14(b), it is clearly seen that G(s) and H(s)
have a common factor s + 1. The closed-loop transfer function C(s)/R(s) is

C(s) _ K

R(s): s(s+1)(s+2)+ K(s+1)

The characteristic equation is
[ss+2) +K}(s+1) =0

Because of the cancellation of the terms (s + 1) appeanng in G(s) and H(s), however,
we have

K(s +1)
s(s + 1)(s +2)
s(s +2) + K

s(s +2)

1+ G(s)H(s) =1 +

The reduced characteristic equation is
s(s+2)+K=0

The root-locus plot of G(s)H (s) does not show all the roots of the characteristic equa-
tion, only the roots of the reduced equation.

To obtain the complete set of closed-loop poles, we must add the canceled pole of
G(s)H(s) to those closed-loop poles obtained from the root-locus plot of G(s)H(s).
The important thing to remember is that the canceled pole of G(s)H (s) is a closed-loop
pole of the system, as seen from Figure 6-14(c).

R(s) )

A 2

7 % K 1
96‘ %‘ G+ E+2) s

(@)

G(s)
R(s) X ) R(s) K
ss+1D)(s+2) . - s(s+2) o 1

C(s)

[
+

S+ 1 |t

H(s)
() , ©
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Cancellation of Poles of G(s) with Zeros of H(s). Itis important to note that

__ if the denominator of G(s) and the numerator of H(s) involve common factors then the

corresponding open-loop poles and zeros will cancel each other, reducing the degree of
the characteristic equation by one or more. For example, consider the system shown in
Figure 6-14(a). (This system has velocity feedback.) By modifying the block diagram of
Figure 6-14(a) to that shown in Figure 6-14(b), it is clearly seen that G(s) and H(s)
have a common factor s + 1. The closed-loop transfer function C(s)/R(s) is

Cls) _ K

R(s): s(s+1)(s+2)+K(s+1)
The characteristic equation is

[s(s +2) + K](s+1) =0

Because of the cancellation of the terms (s + 1) appeaﬁng in G(s) and H(s), however,
we have '

1 K(s+1)
T os(s + (s +2)
s(s+2)+K

s(s +2)

1+ G(s)H(s) =

The reduced characteristic equation is
s(s+2)+K=0

The root-locus plot of G(s)H (s) does not show all the roots of the characteristic equa-
tion, only the roots of the reduced equation.

To obtain the complete set of closed-loop poles, we must add the canceled pole of
G(s)H(s) to those closed-loop poles obtained from the root-locus plot of G(s)H(s).
The important thing to remember is that the canceled pole of G(s) H(s) is a closed-loop
pole of the system, as seen from Figure 6-14(c). ‘ '

R() c6)

\ 4

% < K 1
oé‘ 96‘ [G+D)(+2) s

(2)

G(s)
R(s) K Cls) R(s) K
ss+1) (s+2)f - s(s+2)

Cls)

—

17
+

3

s+1

H{(s)
() _ (©
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Note that once we have some experience with the method, we can easily evaluate the
‘changes in the root loci due to the changes in the number and location of the open-loop
poles and zeros by visualizing the root-locus plots resulting from various pole-zero
configurations. '

Summary. From the preceding discussions, it should be clear that it is possible to
sketch a reasonably accurate root-locus diagram for a given system by following simple
rules. (The reader should study the various root-locus diagrams shown in the solved
problems at the end of the chapter.) At preliminary design stages, we may not need the
precise locations of the closed-loop poles: Often their approximate locations are all that
is needed to make an estimate of system performance. Thus, it is important that the
designer have the capability of quickly sketching the root loci for a given system.

6-4 ROOT-LOC(IS' PLOTS WITH MATLAB

358

In this section we present the MATLAB approach to the generation of root-locus plots
and finding relevant information from the root-locus plots.

Plotting Root Loci with MATLAB. In plotting root loci with MATLAB we
deal with the system equation given in the form of Equation (6-11), which may be
written as

num

1+K~a-é;1‘=-‘0

where num is the numerator polynomial and den is the denominator polynomial.
That is,
oum = (s + z))(s + z)" (s + )
- Sm -+ (21 + 22 4 e 4 zm)sfﬂ"l 4 oo zlzz..-zm
den = (s + p)(s + po) (s + ps)

- =s"+(p+ppt-tp)s” ot pipa P

Note that both vectors num and den must be written in descending powers of s.
A MATLAB command commonly used for plotting root loci is
rlocus{rium,den)

Using this command, the root-locus plot is drawn on the screen. The gain vector K is au-
tomatically determined. (The vector K contains all the gain values for which the closed-

loop poles are to be computed.)
For the systems defined in state space, rlocus(A,B,C,D) plots the root locus of the

system with the gain vector automatically determined.
Note that commands
rlocustnum,den, K} and rlocus(A,B,C,D,K)

use the user-supplied gain vector K.
If invoked with left-hand arguments

[rKl = rlocus{num,den)
[rK] = rlocus(num,den,K)
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[r,K} = rlocus{A,B,C,D)
fr K} = rlocus(A,B,C,D,K)
' [r,K] = rlocus(sys)
the screen will show the matrix r and gain vector K. (r has length K rows and length
den — 1 columns containing the complex root locations. Each row of the matrix corre-
sponds to a gain from vector K.) The plot command :

. plot(r,’-")
plots the root loci. ‘
If it is desired to plot the root loci with marks 'o' or 'x', it is necessary to use the fol-
lowing command:

r = rlocus(num,den)
plot(r,/o') or plot(r,'x")

Plotting root loci using marks o or x is instructive, since each calculated closed-loop pole
is graphically shown; in some portion of the root loci those marks are densely placed and
in another portion of the root loci they are sparsely placed. MATLAB supplies its own
set of gain values used to calculate a root-locus plot. It does so by an internal adaptive
step-size routine. Also, MATLAB uses the automatic axis-scaling feature of the plot

command, .
Finally, note that, since the gain vector is automatically determined, root-locus plots of
_ K(s +1) '
Gls)H(s) = s(s + 2)(s + 3)
10K (s + 1)
Gls)H(s) = s(s + 2)(s + 3)
200K(s + 1
GEH(s) = )

s(s + 2)(s + 3)

are all the same. The num and den set of the system is the same for all three systems. The
num and den are

/

EXAMPLE 6-3 Consider the system shown in Figure 6-15. Plot root loci with a square aspect ratio so that a line
with slope 1 is a true 45° line. Choose the region of root-locus plot to be

-6=x=6, —-6=y=<6

where x and y are the real-axis coordinate and imaginary-axis coordinate, respectively.

K(s +3)
- s(s + 1)(s2 + 4s + 16) i

Fignre 6-15
Control system.
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To set the given plot region on the screen to be square, enter the command
== - o ooy =16 66 6}; axis (v); axis('square’)

With this command, the region of the plot is as specified and a line with slope 1 is at a true 45°,
not skewed by the irregular shape of the screen.

For this problem, the denominator is given as a product of first- and second-order terms. So
we must multiply these terms to get a polynomial in s. The multiplication of these terms can be
done easily by use of the convolution command, as shown next.

Define '

a=s(s+ 1) a=[1 1 0]
b=s%+4s+ 16: b=[1 4 16]
Then we use the following command:
c = conv(a, b)
Note that conv(a, b} gives the product of two polynomials a and b. See the following computer output:

a=[11 0}

b=1{(1 4 16];

c = conv (a,b)

Cc=
1520160

The denominator polynomial is thus found to be
den=1[1 5 20 16 0]
To find the complex-conjugate open-loop poles (the roots of s* + 4s + 16 = 0), we may enter
the roots command as follows:

r = roots(b)
V=
-2.0000 + 3.464li

—2.0000 - 3.464li
Thus, the system has the following open-loop zero and open-loop poles:
Open-loop zero: s=-3
Open-loop poles: s=0, s=~1, s=-2% /34641

MATLAB Program 6-1 will plot the root-locus diagram for this system. The plot is shown in

Figure 6-16.

MATLAB Program 6-1

Yo mmmmmmn Root-locus plot ---------

num=[{0 0 0 1 3];

den=1{1 5 20 16 0J;

rlocus(num,den)

v=[-6 6 -6 6];

axis(v); axis('square')

grid;

title ('Root-Locus Plot of G(s) = K(s + 3)/[s(s + 1)(s*2 + 4s + 16)]")
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Root-Locus Plot of G(s) = K(s + 3)/[s(s + 1) + ds + 16)]

Imag Axis

Figure 6-16
Root-locus plot. ) Real Axis

Note that in MATLAB Program 6-1, instead of
den={1 5 20 16 0]
we may enter

den=conv ([1 1 0}, [1 4 16])
The results are the same.

EXAMPLE 6-4 Consider the system whose open-loop transfer function G(s)H (s) is
' K
G(s)H(s) = :
($)H(s) s(s + 0.5)(s* + 0.65 + 10)
_ K
. s*+ 11s° + 103s> + 55
There are no open-loop zeros. Open-loop poles are located at s = —0.3 + j3.1480,
s = 03 — j3.1480, § = —0.5,and s = 0.
Entering MATLAB Program 6-2 into the computer, we obtain the root-locus plot shown in
Figure 6-17. .

MATLAB Program 6-2

Yo ~anmmmann Root-locus plot -=--ssx--

num=[0 0 0 0 1};
den=[1 1.1 10.3 5 0};
r = rlocus(num,den);
plot(r,'0")
=[-6 6 -6 6]; axis(v)
grid
title('Root-Locus Plot of G(s) = K/[s(s + 0.5)(s*2 + 0.6s+10)]")
xlabel('Real Axis')
ylabel('lmag Axis')
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Figure 6-17
Root-locus piot.
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a2

Root-Locus Plot of G(s) = K/[s(s+0.5)(s2+0.65+10)}

T T

Imag Axis

Notice that in the regions near x = —0.3, y = 23 and x = 0.3, y = —2.3 two loci approach
each other. We may wonder if these two branches should touch or not. To explore this situation,
we may plot the root loci using smaller increments of K in the critical region.

By a conventional trial-and-error approach or using the command rlocfind to be presented
later in this section, we find the particular region of interest to be 20 < K =< 30. By entering
MATLAB Program 6-3, we obtain the root-locus plot shown in Figure 6-18. From this plot, it
is clear that the two branches that approach in the upper half-plane (or in the lower half-plane)

- do not touch.

MATLAB Program 6-3
% «-------- RoOt-locus plot ---------

num=[0 00 0 1];

den=1[1 1.1 10.3 5 0};

K1 = 0:0.2:20;

K2 =20:0.1:30;

K3 = 30:5:1000;

K=[K1 K2 K3];

t = rlocus(num,den,K);

plot(r, '0")

v=[-4 4 -4 4]; axis(v)

grid ' .
title('Root-Locus Plot of G(s) = K/[s(s + 0.5)(sA2 + 0.6s + 10)]")
xlabel('Real Axis')

ylabel('lmag Axis')
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Figure 6-18
Root-locus plot.

EXAMPLE 6-5

Figure 6-19
Closed-loop control
system.

» ' L
- ’

Root-Locus Plot of G(s)

T T

= K/[s(5+0.5)(s>+0.65+10)]

Imag Axis

Real Axis

Consider the system shown in Figure 6-19. The system equations are

x =Ax + Bu
y=Cx + Du
u=r—y

In this example problem we shall obtain the root-locus diagram of the system defined in state
space. As an example let us consider the case where matrices A, B, C,and D are

0 1 0 0
A=l o o 1|, B=| 1 (6-15)
~160 —56 —14 ~14
c=[1 0 0], D =[0]

The root-locus piot for this system can be obtained with MATLAB by use of the following
command:

riocus(A,B,C,D)
| D
r u X X ¥y
(4 > B f C M-
A
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This command will produce the same root-locus plot as can be obtained by use of the rlocus
+— -~ - (num,den) command; where numand den are obtained from- o

[num,den] = ss2tf(A,B,C,D)
as follows:
num=[0 0 1 0]

den=1{1 14 56 160]
MATLAB Program 64 is a program that will generate the root-locus plot as shown in Figure

6-20.

MATLAB Program 6-4
Yo =--mnmnnm Root-locus plot ---------

=[0 1 0,0 0 1;-160 -56 -14[;
B = [0;1;-14];
C=[1 0 0};
D = [0];
K = 0:0.1:400;
rlocus(A,B,C,D,K); i

={-20 20 -20 20}; axis(v)

grxd
title(*Root-Locus Plot of System Defined in State Space')

" Root-Locus Plot of System Defined in State Space

Imag Axis

Figure 6-20
Root-locus plot of
system defined in

state space, where A,
B,C,and Dareas
given by Equation : Real Axis
(6-15).
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Figure 6-21

(a) Complex poles;
(b) lines of constant
dampingratio .

o

(<0

£<0

(@)

Constant Z Loci and Constant w, Loci. Recall that in the complex plane the
damping ratio ¢ of a pair of complex-conjugate poles can be expressed in terms of the
angle ¢, which is measured from the negative real axis, as shown in Figure 6-21 (a) with

{ = cosd

In other words, lines of constant damping ratio { are radial lines passing through the
origin as shown in Figure 6-21(b). For example, a damping ratio of 0.5 requires that
the complex poles lie on the lines drawn through the origin making angles of +60°
with the negative real axis. (If the real part of a pair of complex poles is positive, which
means that the system is unstable, the corresponding  is negative.) the damping ratio
determines the angular location of the poles, while the distance of the pole from the
origin is determined by the undafggd natural frequency w,. The constant o, loci are
circles. ﬁ]\

To draw constant ¢ lines and constant w, circles on the root-locus diagram with
MATLAB, use the command sgrid.

Plotting Polar Grids in the Root-Locus Diagam. The command
sgrid

overlays lines of constant damping ratio ({ = 0 ~ 1 with 0.1 increment) and circles of
constant w, on the root-locus plot. See MATLAB Program 6-5 and the resulting diagram
shown in Figure 6-22. ‘

If only particular constant ¢ lines (such as the { = 0.5 line and { = 0.707 line) and
particular constant w, circles (such as the w, = 0.5 circle,w, = 1 circle, and @, = 2 cir-
cle) are desired, use the following command:

sgrid((0.5, 0.707}, [0.5, 1, 2])
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Figure 6-22
Constant £ lines and
constant w,, circles.
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MATLAB Program 6-5

sgrid .
v=[-2. 2 -2 2J; axis(v); axis('square")
title('Constant \zeta Lines and Constant \omega_n Circles')
xlabel(Real Axis')

ylabel('lmag Axis")

gtext('\zeta = 0.9')

gtext(*0.8')

gtext(‘0.7")

gtext(*'0.6')

gtext('0.5")

gtext('0.4')

gtext('0.3")

gtext('0.2")

gtext('0.1") :

gtext("\omega_n = 1)
gtext("\omega_n = 2')

Constant { Lines and Constant w,, Circles

T T T ~T

)

2 —15 -1 05 0 05
Real Axis

15 2

e

If we wish to overlay lines of constant ¢ and circles of constant w, as given above to a
root-locus plot of a system with

then enter MATLAB Program. 6-6 into the computer. The resulting root-locus plot is
shown in Figure 6-23. '
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MATLAB Program 6-6

num=1[0 0 0 1};

den={1 4 5 0};

rlocus(num, den);

v=[-3 1 -2 2}; axis(v); axis(‘square')
sgrid([0.5,0.7071, {0.5,1,2])
title(*Root-Locus Plot with \zeta = 0.5 and 0.707 Lines and \omega_n = 0.5, 1, and 2 Circles')
gtext(*\zeta = 0.5)

gtext("\zeta = 0.707")
gtext{"\omega_n = 2')
gtext("\omega_n = 1)
gtext("\omega_n = 0.5')

Root-Locus Plot with { = 0.5 and 0.707 Lines

2
L5
1F
. 03
30
B
-0.5
: s X
Figure 6-23 ®a=2
Counstant ¢ lines and =-L5t 1
constant w, circles - T e ‘
superimposed on a 3 25 2 15 -1 05 0 05 1

root-locus plot. ‘ Real Axis

If we want to omit either the entire constant { lines or entire constant w, circles, we
may use empty brackets [ ] in the arguments of the sgrid command. For example, if we want
to overlay only the constant damping ratio line correspondinig to £ = 0.5 and no constant
wj, circles to the root-locus plot shown in Figure 6-23, then we may use the command

_ sgrid(0.5, (1)
See MATLAB Program 6-7 and the resulting plot shown in Figure 6-24.

MATLAB Program 6-7

num={0 0 0 1J;

den=1[1 4 5 0];

rlocus(num, den) :

v=[3 1 -2 2];axis(v); axis(‘square')
sgrid(0.5, 1)

title('Root-Locus Plot and \zeta = 0.5 Line')
gtext("\zeta = 0.5')
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Figure 6-24
Root-locus plot with
¢ = 0.5 line.

Figure 6-25

Plots of constant-
gain and constant-
phase loci in the
G(s)H(s) plane.

~
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3

Root-Locus Plot and £ = 0.5 Line

<3 25 2 <15 -1 05 0 05 1
Real Axis

Orthogonality of Root Loci and Constant-Gain Loci. Consider the system
whose open-loop transfer function is G(s)H(s). In the G(s)H(s) plane, the loci of
|G(s)H((s)| = constant are circles centered at the origin, and the loci corresponding to
[G(s)H(s) = +£180°(2k + 1) (k = 0, 1, 2,...) lie on the negative real axis of the
G(s)H (s) plane, as shown in Figure 6-25. [Note that the complex plane employed here

is not the s plane, but the G(s)H(s) plane.]
The root loci and constant-gain loci in the s plane are conformal mappings of the loci

of /G(s)H(s) = +£180°(2k + 1) and of |G(s)H (s)| = constant in the G(s) H(s) plane.

Since the constant-phase and constant-gain loci in the G(s)H(s) plane are orthog-
onal, the root loci and constant-gain loci in the s plane are orthogonal. Figure 6-26(a)
shows the root loci and constant-gain loci for the following system:

K(s +2)

G(s) = R H(s) =1
Im } ) Im )
G(s) H(s) Plane G(s) H{(s) Plane
/ G(s) H(s) ‘
\ : = £180° 2k + 1)
Q/ Re Y ;{e

X

|G(s) H(s)| = constant
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Figure 6-26

Plots of root loci and constant-gain loci. (a) System with G(s) = K(s + 2)/(s* + 25 + 3),
H(s) = 1; (b) system with G(s) = K/[s(s + 1)(s + 2)] H(s) = 1.

Notice that since the pole-zero configuration is symmetrical about the real axis the con-
stant-gain loci are also symmetrical about the real axis.
Figure 6-26(b) shows the root loci and constant-gain loci for the system:

___ X
s(s + 1)(s +2)°

Notice that since the configuration of the poles in the s plane is symmetrical about the
real axis and the line parallel to the imaginary axis passing through point (o = ~1,

= 0), the constant-gain loci are symmetrical about the = 0 line (real axis) and the
o = —1 line.

From Figures 6-26(a) and (b), notice that every point in the s plane has the corre-
sponding K value. If we use a command rlocfind (presented next), MATLAB will give
the K value of the specified point as well as the nearest closed-loop poles corresponding
to this K value. :

G(s) - H(s) =1

Finding the Gain Value K at an Arbitrary Point on the Root Loci. In MAT-
LAB analysis of closed-loop systems, it is frequently desired to find the gain value K at
an arbitrary point on the root locus.This can be accomplished by using the following
rlocfind command: : :

IK, r] = rlocfind(num, den)
The rlocfind command, which must follow an rlocus command, overlays movable x-y co-
ordinates on the screen. Using the mouse, we position the origin of the x-y coordinates
over the desired point on the root locus and press the mouse button. Then MATLAB

Section 6-4 / Root-Locus Plots with MATLAB . 369



EXAMPLE 6-6

370

&

displays on the screen the coordinates of that point, the gam value at that pomt and the

- closed-loop poles correspondmg to this gain value.

If the selected point is not on the root locus, the rlocfind command gives the coor-
dinates of this selected point, the gain value of this point, and the locations of the closed-
loop poles corresponding to this K value: [Note that every point on the s plane has a gain
value. See, for example, Figures 6-26 (a) and (b).]

Consider the unity-feedback control system with the following feedforward transfer function:

K
s(s? + 4s + 5)

Plot the root loci with MATLAB. Determine closed-loop poles that have the damping ratio of 0.5.
Find the gain value X at this point.

We first plot a root-locus diagram as shown in Figure 6-27. Then enter the rlocfind command
as shown in MATLAB Program 6-8. Position the origin of the x-y coordinates over the intersec-
tion of the upper root-locus branch and the { = 0.5 line. Then press the button of the mouse. The
screen shows the coordinates of this point, the gain value at this point, and the closed-loop poles
corresponding to this gain value. .

The plot shows the closed-loop poles by a plus sign (+). The three closed-loop poles obtained
are

G(s) =

s =-27474, s =-06263 + j1.0800, = ~0.6263 — j1.0800

‘Note that the three closed-loop poles are slightly off the exact locations obtained by the analytic

method. The reason is that we cannot position the origin of the movable x-y coordinates exactly
at the intersection of the upper root-locus branch and the ¢ = 0.5 line.

MATLAB Program 6-8

num={0 0 0 1];

den=1[1 4 5 0];

rlocusinum, den);

v=1[-3 1 -2 2]; axis(v); axis('square')
sgrid(0.5, [])

[K,r] = rlocfind(num, den)

Select a point in the graphics window

selected_point =
-0.6246 + 1.0792i
K=

4.2823
r=

-2.7474
-0.6263 + 1.0800i
-0.6263 - 1.0800i

Chapter 6 / Root-Locus Analysis




e

3 ' e

Imag Axis '

~-0.5

-15
Root-locus plot with 23355 2 15 -1 05 0 05 1
{= 0.5 line. Real Axis
Nonminimum-Phase Systems. If all the poles and zeros of a system lie in the left-
half s plane, then the system is called minimum phase. If a system has at least one pole
or zero in the right-half s plane, then the system is called nonminimum phase. The term
nonminimum phase comes from the phase-shift characteristics of such a system when
subjected to sinusoidal inputs.
Consider the system shown in Figure 6-28(a). For this system
o = KL=TS) s H =1
(s) = s(Ts + 1) “ ’ (s) =
This is a nonminimum-phase system since there is one zero in the right-half s plane. For
this system, the angle condition becomes
§ ' / K(T,s - 1)
[Gs) = s(Ts +1
K(T,s — 1)
= /————— + 180°
s(Ts +1 0
= £180°(2k + 1) (k=0,1,2,...)
R(s) K(1 ~T,5) C(s) - K>
s(Ts+ 1) > -~
ﬁgure 6-28
(a) Nonminimum-
phase system; :
@ ®)

(b) root-locus plot.
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(6-16)

The root loci can be obtained from Equation (6-16). Figure 6-28(b) shows a root-locus
plot for this system. From the diagram, we see that the system is stable if the gain K is

less than 1/7,. .
To obtain a root-locus plot with MATL.AB, enter the numerator and denominator

as usual. For example, if T = 1 sec and T, = 0.5 sec, enter the following num and den
in the program:

num = [0 -0.5 1] .

den={1 1 0] .
MATLAB Program 6-9 gives the plot of the root loci shown in Figure 6-29.

MATLAB Program 6-9

num = [0 -0.5 1];

den=[1 1 0];

k1 = 0:0.01:30;

k2 = 30:1:100;

K3 = 100:5:500;

K=[k! k2 k3];

rlocus(num,den,K)

v=[-2 6 -4 4]; axis(v); axis('square’)

grid

title(*Root-Locus Plot of G(s) = K(1 - 0.5s)/[s(s + 1)]")

Root-Locus Plot of G(s) = K(1 — 0.55)/[s(s + 1)]

T T T T T

Imag Axis

Figure 6-29

Root-locus plot of S

G(s) = K(1-05s) o0 1 2 3 4 56
. s(s +1) Real Axis
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6-5 POSITIVE-FEEDBACK SYSTEMS

Figure 6-30
Congol system.

Root Loci for Positive-Feedback Systems.* Ina complex control system, there
may be a positive-feedback inner loop as shown in Figure 6-30. Such a loop is usually
stabilized by the outer loop. In what follows, we shall' be concerned only with the positive-
feedback inner loop. The closed-loop transfer function of the inner loop is

C(s) _ G(s)
R(s)  1- G(s)H(s)

The characteristic equation is
1 — G(s)H(s) = 0 (6-17)

This equation can be solved in a manner similar to the development of the root-locus
method in Section 6-2. The angle condition, however, must be altered.
Equation (6-17) can be rewritten as

G(s)H(s) = 1
which is equivalent to the following two equations:
[G(s)H(s) = 0° + k360° (k=0,1,2,...)
GEHE) =1

The total sum of all angles from the open-loop poles and zeros must be equal to
0° + %360°. Thus the root locus follows a 0° locus in contrast to the 180° locus consid-
ered previously. The magnitude condition remains unaltered.

~ To illustrate the root-locus plot for the positive-feedback system, we shall use the fol-
Jowing transfer functions G(s) and H(s) as an example.

K(s +2)
(s +3)(s2 +2s +2)

G(s) = " H(s) =1

The gain K is assumed to be positive.

R(s) C(s)
—»@—» Gy(s) G >

H(s) |-

H (S) -

* Reference W-4
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The general rules for constructmg root loci given in Section 6-3 must be modified in

. the followingway: — . ——- .. . - . R e

Rule 2 is Modified as Follows: If the total number of real poles and real zeros to the right
of a test point on the real axis is even, then this test point lies on the root locus.

Rule 3 is Modified as Follows:

k360°
-m

Angles of asymptotes = :; (k=0,1,2,...)

where n = number of finite poles of G(s)H(s)
m = number of finite zeros of G(s)H(s)

Rule 5 is Modified as Follows: When calculating the angle of departure (or angle of ar-
rival) from a complex open-loop pole (or at a complex zero), subtract from 0° the sum
of all angles of the vectors from all the other poles and zeros to the complex pole (or com-
plex zero) in question, with appropriate signs included.

Other rules for constructing the root-locus plot remain the same. We shall now apply
the modified rules to construct the root-locus plot.

1. Plot the open-loop poles (s = —1 + j,s = =1 — j,s = —-3) and zero (s = -2)in
the complex plane. As X is increased from 0 to oo, the closed-loop poles start at the
open-loop poles and terminate at the open-loop Zeros (finite or infinite), just as in
the case of negative-feedback systems.

- 2. Determine the root loci on the real axis. Root loci exist on the real axis between
-2 and +oo and between —3 and —co.

3. Determine the asymptotes of the root loci. For the present system,

]

Angles of asymptote = k = +180°

3-1.

This simply means that asymptotes are on the real axis.
4. Determine the breakaway and break-in points. Since the characteristic equation is

(s+3)(s*+25s+2) - K(s +2) =

we obtain

3 (s + 3)(s* + 25 + 2)
B s+ 2

By differentiating K with respect to s, we obtain

dK 25 + 115 + 205 + 10
ds (s +2)?
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Figure 6-31

Root-locus plot for the '

positive-feedback
system with -~
G(s) = K(s + 2)/

[(s + 3)( + 25 + 2)],
H(s)=1

D

Note that

25% + 11s% + 205 + 10 = 2(s + 0.8)(s? + 47s + 6.24)
= 2(s + 0.8)(s + 2.35 + jO.77)(s + 2.35 — jO.77)

Point s = —0.8 is on the root locus. Since this point lies between two zeros (a finite
zero and an infinite zero), it is an actual break-in point. Points s = —2.35 + j0.77
do not satisfy the angle condition and, therefore, they are neither breakaway nor
break-in points.

5. Find the angle of departure of the root locus from a complex pole. For the com-
plex pole at s = —1 + j, the angle of departure 6 is '

6 = 0° — 27° — 90° + 45°
or
6 = ~72°

(The angle of departure from the complex pole ats = ~1 — jis72°)

6. Choose a test point in the broad neighborhood of the jw axis and the origin and
apply the angle condition. Locate a sufficient number of points that satisfy the
angle condition.

Figure 6-31 shows the root loci for the given positive-feedback system. The root loci

are shown with dashed lines and a curve. :

Note that if

(s + 3)(s* + 25 + 2) 3
s +2 s=0 -—

one real Toot enters the right-hdlf s plane. Hence, for values of K greater than 3, the
system becomes unstable. (For K > 3, the system must be stabilized with an outer
loop.)

Jq
X — il
- ‘ J
STV S S S} R A Y P
S5 4 3 2 -

1 1
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Figure 6-32

Root-locus plot for the
negative-feedback
system with

G(s).= K(s + 2)/

[(s +3)(& + 25 + 2)],

H(s) = 1.

»

S _ o)
— /3
- 2
- /1
} l & S l | |
-5 4 3 2 -1 0 1 2 o
L I
3

Note that the closed -loop transfer functlon for the posmve-feedback system is-
glven by :

c(s) _ | G(s)
R(s) 1 - G(s)H(s)

_ K(s +2)
- (s +3)(s* + 25 +2) — K(s + 2)

To compare this root-locus plot with that of the corresponding negative-feedback sys-

tem, we show in Figure 6-32 the root loci for the negative-feedback system whose closed-
. loop transfer function is A

Cs) K(s +2)
R(s) (s+3)(s*+2s+2) + K(s + 2)

Table 6-2 shows various root-locus plots of negative-feedback and posmve-feedback
systems. The closed-loop transfer functions are given by

_G
1+ GH’

O

for negative-feedback systems

R
C G »
R 1ZcH’ for positive-feedback systems

where GH is the open-loop transfer function. In Table 6-2, the root loci for negative-

 feedback systems are drawn with heavy lines and curves, and those for positive-feedback

376

systems are drawn with dashed lines and curves.
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“Table 62 Root-Locus Plots of Negative-Feedback and Positi.ve-

Feedback Systems
jok . jo |
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Heavy lines and curves correspond to negative-feedback systems; dashed lines and
curves correspond to positive-feedback systems.
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6-6 CONDITIONALLY STABLE SYSTEMS

Consider the system shown in Figure 6-33. We can plot the root loci for this system by
applying the general rules and procedure for constructing root loci, or use MATLAB to
get root-locus plots. MATLAB Program 6-10 will plot the root-locus diagram for the sys-
tem. The plot is shown in Figure 6-34.

It can be seen from the root-locus plot of Figure 6-34 that this system is stable only
for limited ranges of the value of K—thatis,0 < K < 12and 73 < K < 154. The sys-
tem becomes unstable for 12 < K < 73 and 154 < K. (If K assumes a value corre-

R(s)

Figure 6-33

K(s2 + 25 +4) Cs)

3(5 +4) (s + 6)(s* + LAs + 1)

Control system.

MATLAB Program 6~10

num=[0001 2 4]
rlocus(num, den)
grid

text(1.0, 0.55,'K = 121
text(1.0,3.0,'K = 73")

den = conviconv({1 4 0},[1 6]), [1 1.4 1]);
v=[7 3 -5 5}; axis(v); axis('square')

title('Root-Locus Plot of G(s) = K(s72 + 25 + 4)/[s(s + 4)(s + 6)}(s"2 + 1.4s + 1)]')

texi(1.0,4.15,'K = 154’)

'

Root-Locus Plot of G(s) = K(s?+ 25 + 4)/[s(s + 4)(s + 6)(s? + L4s + 1)}

5 12

Imag Axis

Figure 6-34
Root-locus plot of

T

T T ¥ T

conditionally stable
system.
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sponding to unstable operation, the system may break down or may become nonlinear
due to a saturation nonlinearity that may exist.) Such a system is called conditionally
stable.
" In practice, conditionally stable systems are not desirable. Conditional stability is
dangerous but does occur in certain systems, in particular, a system that has an unsta-
ble feedforward path. Such an unstable feedforward path may occur if the system has a
minor loop. It is advisable to avoid such conditional stability since, if the gain drops be-
yond the critical value for any reason, the system becomes unstable. Note that the ad-
dition of a proper compensating network will eliminate conditional stability. [An addition
of a zero will cause the root loci to bend to the left.(See Section 7-2.) Hence conditional
stability may be eliminated by adding proper compensation. ]

6-7 ROOT LOCI FOR SYSTEMS WITH TRANSPORT LAG

Figure 6-35 shows a thermal system in which hot air is circulated to keep the tempera-
ture of a chamber constant, In this system, the measuring element is placed downstream
a distance L ft from the furnace, the air velocity is v ft/sec,and T = L /v sec would elapse
before any change in the furnace temperature is sensed by the thermometer. Such a
delay in measuring, delay in controller action, or delay in actuator operation, and the like,
is called transport lag or dead time. Dead time is present in most process control systems.

The input x(¢) and the output y(¢) of a transport-lag or dead-time element are

related by
y(t) = x(¢t = T)
where T is dead time. The transfer function of transport lag or dead time is given by
' Lx(t - T)1(t - T)]

Transfer function of transport lag or dead time =
- £x(01(1)]
= _X_(S_szi = g Is
= XE -

} = Lt -
| | i
J (:( ‘:\ Thermometer
L v f/sec ! ”
i :
Fuel 3
:«'it_ :
- o !
Figure 6-35 _ —C , |
Thermal system. Blower ’
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Block diagram of the
system shown in
Figure 6-35.
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AR

Kels C(s)
s+l - - . ol -

Suppose that the feedforward transfer function of this thermal system can be
approximated by ' '
Ke—Ts

s+1

as shown in Figure 6-36. Let us construct a root-locus plot for this system. The charac-
teristic equation for this closed-loop system is

Ke™s
s+1 (6-18)
It is noted that for systems with transport lag the rules of construction presented
earlier need to be modified. For example, the number of the root-locus branches is in-
finite, since the characteristic equation has an infinite number of roots. The number of
asymptotes is infinite. They are all parallel to the real axis of the s plane, as will be seen
later.
From Equation (6-18), we obtain

KeTs
s+1

G(s) =

1+

=-1

Thus, the angle condition becomes

~T's ’
fi = [T - s+ 1=21802 + 1) (k=012..) (619

To find the angle of ¢ 7%, substitute s = o + jw.Then we obtain

~Ts

e ~To—jwT

=¢
Since 777 is a real quantity, the angle of ¢7” is zero. Hence
JeTs = JeT = [coswT — jsinwT
= —wT (radians)
= ~-5730T (degrees)

Since 7 is a given constant, the angle of ¢ T is a function of w only. The angle condition,
Equation (6-19), then becomes

573wl — [s:+ 1 =+180°(2k + 1)

We shaﬂ next determine the angle contribution due to ¢’ T* as given by Equation
(6-19). For k = 0, the angle condition may be written

/s + 1 = +180° — 57.3°T (6-20)
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Since the angle contribution of e™7* is zero for @ = 0, the real axis from —1 to —oo forms
a part of the root loci. Now assume a value o, for w and compute 57.3°0; T. At point ~1
on the negative real axis, draw a line that makes an angle of 180° — 57.3°%», T with the
real axis. Find the intersection of this line and the horizontal line w = ,.This intersec-
tion, point P in Figure 6-37(a), is a point satisfying Equation (6-20) and henceisona’
root locus. Continuing the same process, we obtain the root-locus plot as shown in Fig-

ure 6-37(b). ,
Note that as s approaches minus infinity, the open-loop transfer function
KeTs :
s+ 1
approaches minus infinity since
K e—Tx :‘Zg_ (K e_Ts)
L
ES— (s + 1) -
= —KTe‘Ts|,=_sw "
= —00

‘Therefore,s = —cois a pole of the open-loop transfer function. Thus, root loci start from
s = —1 or s = —oo and terminaté at s = oo, as K increases from zero to infinity. Since
the right-hand side of the angle condition given by Equation (6-19) has an infinite num-
ber of values, there are an infinite number of root loci, as the value of k (k = 0,1,2,...)
goes from zero to infinity. For example, if kK = 1, the angle condition becomes

[s + 1=+ 540° — 57.3°%T  (degrees)
= %+ 37 - T (radians)

Jey
0 =K y
— -

0 o
Figure 6-37
(a) Construction of
the root locus;
(b) root-locus plot. ‘ @ ®)
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. The construction of the root loci for k = 1 is the same as thatfork = 0. A plot of root
I - " Jocifork =0,1,and2wheii T = I'sec is shown in Figure 6-38. T
The magnitude condition states that
Ke~Ts
s+1

Since the magnitude of ™™ is equal to that of e 77 or
I e—Tsl — ! e—Tul . [ e—;wTI = e—T&r

the magnitude condition becomes
s + 1] = Ke™™”

The root loci shown in Figure 6-38 are graduated in terms of K when T = 1 sec.
Although there are an infinite number of root-locus branches, the primary branch
that lies between —j7 and jm is most important. Referring to Figure 6-38, the critical
value of X at the primary branch is equal to 2, while the critical values of K at other
branches are much higher (8, 14,...). Therefore, the critical value X = 2 on the primary
branch is most significant from the stability viewpoint. The transient response of the
system is determined by the roots located closest to the jw axis and lie on the primary
branch. In summary, the root-locus branch correspondmg to k = 01is the dominant one;
other brarnches correspondmg to k =1, 2, 3, ... are not so important and may be

neglected.
Jo
K=0.028 K=55x 10
K=6X 107 K=14 K=l800
NE
s I *k=2)
—— Jjamr 3
Kesx1gs K=001 s K=f500 K=45Xx10
r
27 =
ko2 K=4000 K=39X10
Nt A
i ! » k=0
K=41X10° K=0011 N —— (k=0)
: Ny ./A,ﬂ‘ s L | N
-4 Bwr 2w —-1r&0 T 27 3w 4w Sw o
P L e e (k= 0)
. i
K=2
. K=4000 k=39 X 10
27 -
L
37 \ .I‘. T (e=1)
= 5 K=8
Figure 6-38 K=5X10" k0019 4 K=5500 g_45x 106
Root-locus plot for
the system shown in 57 AN ll' k=2)
Figure 6-36 : _ 5 : K=14 . _ ’
(T =1sec). K=6X10° 00 K=8000 . oo 6
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This example illustrates the fact that dead time can cause instability even in the first-
order system because the root loci enter the right-half s plane for large values of K.
Therefore, although the gain K of the first-order system can be set at a high value in the
absence of dead time, it cannot be set too high if dead time is present. (For the system
considered here, the value of gain K must be considerably less than 2 for a satisfactory
operation.)

Approximation of Transport Lag or Dead Time. If the dead time T is very small,
then e”7* is frequently approximated by :

el =1-~Ts
or

—TS# 1
Ts +1

Such approximations are good if the dead time is very small and, in addition, the input

" time function f(¢) to the dead-time element is smooth and continuous. [This means that
the second- and higher-order derivatives of f(¢) are small.]

A more elaborate expression to approximate ¢ 7 is available and is

@y _@se 7.

T o -5 +7% 48
Ts (Ts)> (Ts)®
L+ gt t

If only the first two terms in the numerator and denominator are taken, then

N

s = 2 _2-Ts
' Ts 2+ Ts
1+7

This approximatjon is also used frequently.

MATLAB Approximation of Dead Time. To handle dead time ¢, MATLAB
uses the pade approximation. For example, if T = 0.1 sec, then using the third-order
transfer function as an approximation to ™7, enter the following MATLAB program
into the computer.

[num,den] = pade(0.1, 3);
printsys{num, den, 's')
num/den =
=15"3 + 120s*2 — 6000s + 120000
sA3 + 12072 + 6000s + 120000
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Similarly, the program for the fourth-order transfer function approximation with

T =0l1lsecis .. .. . . et

[num,den] = pade(0.1, 4);

printsys(num, den, 's')
num/den =
sA4 — 200s73 + 18000s”2 — 840000s + 16800000
sh4 + 200s73 + 18000572 + 840000s + 16800000

Notice that the pade approximation depends on the dead time 7 and the desired order
for the approximating transfer function.

EXAMPLE PROBLEMS AND SOLJTIONS

Sketch the root loci for the system shown in Figure 6-39(a). (The gain X is assumed to be posi-
tive.) Observe that for small or large values of K the system is overdamped and for medium val-

ues of K it is underdamped.
Solution. The procedure for plotting the root loci is as follows:

1. Locate the open-loop poles and zeros on the complex plane. Root loci exist on the negative
real axis between 0 and ~1 and between ~2 and 3.

2. The number of open-loop poles and that of finite zeros are the same. This means that there
are no asymptotes in the complex region of the s plane.

Jo i

.._j2

K=00718

s+3 . C'(s);
s(s+1) o

K(s +2)

4

- 2

384

(@ ®)

Figure 6-39
(a) Control system; (b) root-locus plot.
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3. Determine the breakaway and break-in points. The characteristic equation for the system is

K(s +2)(s +3) _

s(s + 1) 0

or

K = s(s + 1)
T s+ 2)(s+3)
The breakaway and break-in points are determined from

dK (2s + 1)(s +2)(s +3) — s(s + 1)(25s + 5)

ds s+ 2)s+ )P

_4(s + 0.634)(s + 2.366)
T [+ 2+

as follows:
s = —0.634, s = —2.366

Notice that both points are on root loci. Therefore, they are actual breakaway or break-in
points. At point s = +0.634, the value of K is’ —

_ (~0.634)(0366)

=~ (iaes)(2366) 0078

Similarly, at s = —2.366,

(~2.366)(~1.366) _'
T (~0.366)(0.634)

(Because point s = —0.634 lies between two poles, it is a breakaway point, and because point
s = —2.366 lies between two zeros, it is a break-in point.)

4. Determine a sufficient number of points that satisfy the angle condition. (It can be found
that the root loci involve a circle with center at —1.5 that passes through the breakaway and
break-in points.) The root-locus plot for this system is shown in Figure 6-39(b).

Note that this system is stable for any positive value of K since all the root loci lie in the left-
half s plane. . :

Small values of K (0 < K < 0.0718) correspond to an overdamped system. Medium values
of K (0.0718 < K < 14) correspond to an underdamped system. Finally, large values of
K (14 < K) correspond to an overdamped system. With a large value of K, the steady state can
be reached in much shorter time than with a small value of X.

The value of K should be adjusted so that system performance is optimum according to a
given performance index. )
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Figure 6-41
(a) Control system;
"(b) root-locus plot.
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A

| K
s(s% + 45+ 5)

(@

®)

The breakaway and break-in points are found from dK/ds = 0. Since the characteristic equation is
S +452+55+ K =0, ‘

[}

we have ' kY
K =—(s* + 4s* + 55) "
Now we set
’ e dK
— + =
7 (3> + 85+ 5) =0
which yields

s=-1, s=-16667
Since these points are on root loci, they are actual breakaway or break-in points. (At point s = ~1,
the value of K'is 2, and at point s = —1.6667, the value of X .is 1.852.)
The angle of departure from a complex pole in the upper half s plane is obtained from
6 = 180° — 153.43° — 90°
or .
0 = —6343° o
The root-locus branch from the complex pole in the upper half s plane breaks into the real axis

ats = —1.6667.
Next we determine the points where root-locus branches cross the imaginary axis. By substi-

tuting s = jw into the characteristic equation, we have
(jo) + 4(jw)? + S(jw) + K =0
or
(K — 40?) + jeo(5 — w?) =0
from which we obtain '
o=+V5, K=20 or w =0, K=0

Chapter 6 / Root-Locus Analysis




A-6-4.

2

Root-locus branches cross the imaginary axis at @ = V/5 and @ = —V/5. The root-locus branch
on the real axis touches the jo axis at @ = 0. A sketch of the root loci for the system is shown in
Figure 6-41(b). _

Note that since this system is of third order, there are three closed-loop poles. The nature of
the system response to a given input depends on the locations of the closed-loop poles.

For0 < K < 1.852, there are a set of complex-conjugate closed-loop poles and a real closed-
loop pole. For 1.852 < K = 2, there are three real closed-loop poles. For example, the closed-
loop poles are located at :

s = —1.667, s = —1.667, s = —0.667, for K = 1.852
s =1, s =1, §=-2, forK =2

For 2 < K, there are a set of complex-conjugate closed-loop poles and a real closed-loop pole.
Thus, small values of K (0 < K < 1.852) correspond to an underdamped system. (Since the real
closed-loop pole dominates, only a small ripple may show up in the transient response.) Medium
values of K (1.852 = K = 2) correspond to an overdamped system. Large values of K (2 < K)
correspond to an underdamped system. With a large value of K, the system responds much faster
than with a smaller value of K.

Sketch the oot loci for the system shown in Figure 6~42(a).

Solution. The open-loop poles are located ats = 0,s = ~1,5 = 2 + j3,ands = —2 — j3.Aroot
locus exists on the real axis between points s = 0 and s = —1. The angles of the asymptotes are
found as follows: '

+180°(2k + 1) _

Angles of asymptotes = 2 45°,-45°, 135°,~135°
jw 1\
. 4
oy
72
L j1
I I T
-6 -5 -4 2 3 ¢
K -
s(s+ 1) (2 + 45 +13) -
@ . ®)

Figure 642
(a) Control system; (b) root-locus plot.
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The intersection of the asymptotes and the real axis is found from

C0+1+2+
S R Y

4
The breakaway and break-in pqints are found from dK/ds = 0. Noting that
K = —~s(s + 1)(s? + 4s + 13) = —(s* + 55> + 175* + 133)
we have

d
7? =—(45 + 155> + 345 + 13) = 0

from which we get

s =-0467, s=-1642+ j2067, s=-1.642 — j2.067
Point s = —0:467 is on a root locus. Therefore, it is an actual breakaway point. The gain values K
corresponding to points s = —1.642 + j2.067 are complex quantities. Since the gain values are
not real positive, these points are neither breakaway nor break-in points.

The angle of departure from the complex pole in the upper half s plane is
6 = 180° — 123.69° — 108.44° — 90°
or
6 =—142.13°

Next we shall find the points where root loci may cross the jo axis. Since the characteristic
equation is '

P +58 + 172+ 135+ K =0

. by substituting s = jw into it we obtain

(jw)* + 5(jw)*+ 17(jw)? + 13(jo) + K =0 .
or
(K + o - 170%) + jo(13 - 50°) = 0
from which Wwe obtain |
o = + 1.6125, K=3744 or =0 K=0
The root-locus branches that extend to the right-half s plane cross the imaginary axis at

w = +1.6125. Also, the root-locus brarich on the real axis touches the imaginary axis at = 0. Fig-
tire 6-42(b) shows a sketch of the root loci for the system. Notice that each root-locus branch that

extends to the right half s plane crosses its own asymptote.
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Sketch the root loci for the system shown in Figure 6-43(a).

Solution. A root locus exists on the real axis between points s = ~1 and s = —=3.6. The asymp—
totes can be determined as follows: ,
+180°(2k + 1) .

Angles of asymptotes = -1 90°,-90°
The intersection of the asymptotes and the real axis is found from

0+0+36~
s = -———3——_——1———— =-13
Since the characteristic equation is
$+3657+K(s+1)=0
we have
5* + 3.65%
s+1
The breakaway and break-in points are found from
dK (3s2 +72s)(s + 1) — (& + 34 652)
s (s + 1)

or
S +33s2+365=0

Kis+1)
5Xs +3.6)

Y

-

Figure 6-43
(a) Control

@ )

system; (b) root-locus plot.
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from which we get. v
- §=0, -~ §=-—1.65+j0.9367, - 5= —1:65— j0.9367

Points =0 corresponds to the actual breakaway point. But points s = 1.65 + j0.9367 are neither

breakaway nor break-in points, because the correspondmg gain values K become complex

quantities.
To check the points where root-locus branches may cross the i unagmary axis, substltute § = jo

into the charactenstlc equation, yxeldmg »
(jo)* + 36(](9)2 +Kjo + K =0
or
(K — 3.60%) + jo(K — «®) =0

Notice that this equation can be satisfied only if o = 0, K = 0. Because of the presence of a dou-
ble pole at the origin, the root locus is tangent to the jo axis at @ = 0. The root-locus branches do
not cross the jw axis. Figure 6-43(b) is a sketch of the root loci for this system.

A-6-6. Sketch the root loci for the system shown in Figure 6-44(a).
Solation. A root locus exists on the real axis between point s = ~04 and s = —3.6. The angles of
asymptotes can be found as follows:
: +180°(2k + 1)
Angles of asymptotes = 31 " 90°, —-90
Jo )
- /3
60°
L % { Y/ ]
-4 -3 \ )
—60°\\
K(s +0.4)
sHs+3.6) i
L 3
(@ ()
ngure 6-44

(a) Control system; (b) root-locus plot.
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The intersection of the asymptotes and the real axis is obtained from

_0+0+36-04

=16

5=

Next we shall find the breakaway points. Since the characteristic equation is
2 +3652+Ks+04K =0
we have 2

£+ 3.652

K=-=0a

The breakaway and break-in points are found from

dK _ (35> + 7.25)(s + 0.4) — (s* + 3.65%) —o
ds (s + 04)?
from which we get
S +2458% + 1445 = 0
or
s(s + 122 =0

Thus, the breakaway or Bfeak—in points are at s = O and s = ~1.2. Note that s = —1.2is a double
root, When a double root occurs in dK/ds = 0 at point s = —1.2, d*K/ (dsz) = ( at this point. The
value of gain K at point s = ~1.2is : -

_ 5%+ 365
s+4 =2

=432

This means that with K = 4.32 the characteristic equation has a triple root at point s = —1.2.This
. can be easily verified as follows:

$ 43652+ 4325 + 1728 = (s +12)* =0

Hence, three root-locus branches meet at point s = —1.2. The angles of departures at point
*s = =12 of the root locus branches that approach the asymptotes are +180°/3, that is, 60° and
. —60°. (See Problem A~6-7.)

Finally, we shall examine if root-locus branches cross the imaginary axis. By substituting s = je
into the characteristic equation, we have

(jw)® + 3.6(jw)? + K(jw) + 04K =0
or .
(04K — 3.60%) + jo(K — &®) =0

This equation can be satisfied only if @ = 0, K = 0. At point & = 0, the root locus is tangent to
the jw axis because of the presence of a double pole at the origin. There are no points that root-
locus branches cross the imaginary axis. :

- A sketch of the root loci for this system is shown in Figure 6-44(b).
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Frequency-Response
Analysis

» 8-1 INTRODUCTION

492

By the term frequency response, we mean the steady-state response of a system to a
sinusoidal input. In frequency-response methods, we vary the frequency of the input
signal over a certain range and study the resulting response.

In this and the next chapter we present frequency-response approaches to the analy-
sis and design of control systems. The information we get from such analysis is different

- from what we get from root-locus analysis. In fact, the frequency response and root-

locus approaches complement each other. One advantage of the frequency-response
approach is that we can use the data obtained from measurements on the physical system
without deriving its mathematical model. In many practical designs of control systems
both approaches are employed. Control engineers must be familiar with both.

. Frequency-response methods were developed in 1930s and 1940s by Nyquist, Bode,
Nichols, and many others. The frequency-response methods are most powerful in con-
ventional control theory. They are also indispensable to robust control theory.

The Nyquist stability criterion enables us to investigate both the absolute and relative
stabilities of linear closed-loop systems from a knowledge of their open-loop frequency-
response characteristics. An advantage of the frequency-response approach is that
frequency-response tests are, in general, simple and can be made accurately by use of
readily available sinusoidal signal generators and precise measurement equipment. Often
the transfer functions of complicated components can be determined experimentally by
frequency-response tests. In addition, the frequency-response approach has the advan-
tages that a system may be designed so that the effects of undesirable noise are negligible .
and that such analysis and design can be extended to certain nonlinear control systems.




Figure 8-1
Stable, linear, time-
invariant system.

3

Although the frequency response of a control system presents a qualitative picture
of the transient response, the correlation between frequency and transient responses is
indirect, except for the case of second-order systems. In designing a closed-loop system,
we adjust the frequency-response characteristic of the open-loop transfer function by
using several design criteria in order to obtain acceptable transient-response charac-
teristics for the system.

Obtaining Steady-State Outputs to Sinusoidal Inputs. We shall show that the
steady-state output of a transfer function system can be obtained directly from the si-
nusoidal transfer function, that is, the transfer function in which s is replaced by jew,
where w is frequency.

Consider the stable, linear, time-invariant system shown in Figure 8-1.The input and out-
put of the system, whose transfer function is G(s),are denoted by x(r) and y(t), respectively.
If the input x(¢) is a sinusoidal signal, the steady-state output will also be a sinusoidal sig-
nal of the same frequency, but with possibly different magnitude and phase angle.

Let us assume that.the input signal is given by

x(t) = X sinwt _
Suppose that the transfer function G(s) can be written as a ratio of two polynomials in
s; that is,
p(s) p(s)
. G §) = =
_( ) q(s) (s + s)(s+ 5) (s + 54)
The Laplace-transformed output ¥ (s) is then

o s
Y(s) = G)X(5) = 2 x(s) 1)
q(s)
where X (s) is the Laplace transform of the input x(t). .
It will be shown that, after waiting until steady-state conditions are reached, the fre-
quency. response can be calculatéd by replacing s in the transfer function by jw. It will

also be shown that the steady-state response can be given by
' G(jo) = Me® = M /¢

where M is the amplitude ratio of the output and input sinusoids and ¢ is the phase

shift between the input sinusoid and the output sinusoid. In the frequency-response test,

the input frequency o is varied until the entire frequency range of interest is covered.
The steady-state response of a stable, linear, time-invariant system to a sinusoidal

input does not depend on the initial conditions. (Thus, we can assume the zero initia} con-

dition.) If ¥ (s) has only distinct poles, then the partial fraction expansion of Equation

(8-1) yields

. . wX
Y(s) = G()X(s) = G(s) 772
, a b b b
e R (8-2)
s+jo s—jo s+ts s5+5 s+ s,
x() (0
> G(s) >
X(s) ¥(s)
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. where a and the b; (wherei = 1,2,...,n) are constants and @ is the complex conJugate
--of a: The inverse Laplace transformrof Equation (8-2) gives ~ - - wo

y(t) = ae™ + e’ + bye™ + bye™ + - + be™* (1= 0) (8-3)

For a stable system, —s;, —s;,...,—5, have negative real parts. Therefore, as t approaches
infinity, the terms e™*', ™%, . and e approach zero. Thus, all the terms on the nght-
hand side of Equation (8—3) except the first two, drop out at steady state.

If Y (s) involves multxple poles s; of multiplicity m;, then y(¢) will involve terms such
asthie™r(h; = 0,1,2,. - 1). For a stable system, the terms t"fe"/‘ approach zero as
t approaches infinity.

Thus, regardless of whether the system is of the dlstmct-pole type the steady-state
response becomes

Yult) = a7 + Gei™ (8-4)

‘where the constant a can be evaluated from Equation (8-2) as follows:
X G(~]m)
= + j
a = G(s) 32 n w~2 (s + jow) o 2

Note that
| XG(jo)

5 = G - Jw = -

OFr g =5

Since G(jw) is a complex quantity, it can be written in the following form:
G(jw) = |G(jw)le’

where |G(jw)| represents the magnitude and ¢ represents the angle of G( jo); that is,

_ Lo imaginary part of ,G(jw)]
[Gljw) = tan [ real part S Gjo)

The angle ¢ may be negative, positive, or zero. Smnlarly, we obtam the following
expressxon for G(~jw): :

G(ja) = |G(—jw)le™ = [G(jw)le™

Then, noting that
_ XlG(w)le®  _ _ X|G(jw)le?
Ty T
Equation (8-4) can be written
| eflorte) _ gi(aete)
yalt) = XIG(jw)| —
J
= X|G(jo)| sin(wt + ¢) ,
= Y sin(wt + $) ' - (85)
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Figure 8-2
- Input and output
sinusoidal signals.

EXAMPLE 8-1

Figure 8-3
First-order system.

e

Input x() = X sin wt

NavAhavA'S
NN\

Output y(f) = Y'sin (wt + ¢)

where Y = X|G( jw)|- We see that a stable, linear, time-invariant system subjected to a

sinusoidal input will, at steady state, have a sinusoidal output of the same frequency as

the input. But the amplitude and phase of the output will, in general, be different from

those of the input. In fact, the amplitude of the output is given by the product of that of

the input and |G(jw)|, while the phase angle differs from that of the input by the amount

¢ = /G(jw). An example of input and output sinusoidal signals is shown in Figure 8-2.
On the basis of this, we obtain this important result: For sinusoidal inputs,

Y(jw
cUol = i)

Gljw) = Y(jw) _ phase shift of the output sinusoid with respect
/ X(jw)  to the input sinusoid

Hence, the steady-state response characteristics of a system to a sinusoidal input can be
obtained directly from

_ amplitude ratio of the output sinuisoid to the
input sinusoid

Y(jw)
X (jo)

The function G(jw) is called the sinusoidal transfer function. It is the ratio of Y (jw)
to X (jw), is a complex quantity, and can be represented by the magnitude and phase.
angle with frequency as a parameter. The sinusoidal transfer function of any linear system
is obtained by substituting jw for s in the transfer function of the system.

. A positive phase angle is called phase lead, and a negative phase angle is called phase
lag. A network that has phase-lead characteristics is called a lead network, while a net-
work that has phase-lag characteristics is called a lag network.

= G(jw)

Consider the system shown in Figure 8-3. The transfer function G(s) is

o) =75+ 1

For the sinusoidal input x(f) = X sinwt, the steady-state output y(¢) can be found as follows:
Substituting je for s in G(s) yields

Glie) =70 1

Ts+1
G{(s)
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The amplitude ratio of thg output to the input is

EXAMPLE 8-2

G(jw)| =
| : 4 1+ T%?
while the phase angie ¢ is

= [G(jw) = —tan™ Tw

Thus, for the input x(¢) = X sinwf, the steady-state output y,(¢) can be obtained from Equation
(8-5) as follows: .

XK
Y —————sin(wt — tan"'Tw) - 8-6
From Equatlon (8-6), it can be seen that for small w, the amplitude of the steady-state output
¥ss(t) is almost equal to K times the amplitude of the input. The phase shift of the output is small
for small . For large w, the amplitude of the output is small and almost inversely proportional to
. The phase shift approaches —90° as w approaches infinity. This is a phase-lag network.

Consider the network given by

Determine whether this network is a lead network or lag network.
For the sinusoidal input x(¢) = X sinwt, the steady-state output y(t) can be found as follows

Since:
jo + 1
o PTE n(+ Tjw)
G(jw) = - = -
1 11 + Tjw)
T,

we have

Gy = AT
V1 + Tha?
and »
= [G(jw) = tan" Ty ~ tan' Tw
Thus the steady-state output is
Ys(t) = ———”—XBVI—:—T%—
T, V1 + Tiw?

From this expression, we find that if 7, > T, then tan™ Ty ~ tan'Tow > 0. Thus,if T} > T3,
then the network is a lead network. If T; < T,, then the network is a lag network.

sin(wt + tan Ty — tan™ o)

496

Presenting Frequency-Response Characteristics in Graphical Forms The
sinusoidal transfer function, a complex function of the frequency w, is characterized by
its magnitude and phase angle, with frequency as the parameter. There are three
commonly used representations of sinusoidal transfer functions: '
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1. Bode diagram or logarithmic plot
2. Nyquist plot or polar plot
3. Log-magnitude-versus-phase plot (Nichols plots)

We shall discuss these representations in detail in this chapter. We shall also discuss the
MATLAB approach to obtain Bode diagrams, Nyquist plots, and Nichols plots.

Outline of the Chapter. Section 8-1 has presented introductory material on the
frequency response. Section 8-2 presents Bode diagrams of various transfer-function
systems. Section 8-3 discusses a computational approach to obtain Bode diagrams with
MATLAB, Section 8-4 treats polar plots of sinusoidal transfer functions, and Section 8-5
discusses drawing Nyquist plots with MATLAB. Section 8-6 briefly presents log-
magnitude-versus-phase plots. Section 8-7 gives a detailed account of the Nyquist sta-
bility criterion, Section 8-8 discusses the stability analysis of closed-loop systems using
the Nyquist stability criterion, and Section 8-9 treats the relative stability analysis of
closed-loop systems. Measures of relative stability such as phase margin and gain mar-
gin are introduced here. The correlation between the transient response and frequency
response is also discussed. Section 8-10 presents a method for obtaining the closed-loop
frequency response from the open-loop frequency response by use of the M and N
circles. Use of the Nichols chart is also discussed for obtaining the closed-loop frequency
response. Finally, Section 8-11 deals with the determination of the transfer function
based on an experimental Bode diagram.

8-2 BODE DIAGRAMS

Bode Diagrams or Logarithmic Plots. A Bode diagram consists of two graphs:
One is a plot of the logarithm of the magnitude of a sinusoidal transfer function; the
other is a plot of the phase angle; both are plotted against the frequency on a logarithmic
scale. ‘

The standard representation of the logarithmic magnitude of G{jo) is 20 10g|G (jo)},
where the base of the logarithm is 10. The unit used in this representation of the mag-
nitude is the decibel, usually abbreviated dB. In the logarithmic representation, the
curves are drawn on semilog paper, using the log scale for frequency and the linear scale
for either magnitude (but in decibels) or phase angle (in degrees). (The frequency range
of interest determines the number of logarithmic cycles required on the abscissa.)

The main advantage of using the Bode diagram is that multiplication of magnitudes
can be converted into addition. Furthermore, a simple method for sketching an ap-_
proximate log-magnitude curve is available. It is based on asymptotic approximations.
Such approximation by straight-line asymptotes is sufficient if only rough information
on the frequency-response characteristics is needed. Should the exact curve be desired,
corrections can be made easily to these basic asymptotic plots. Expanding the low-

_ frequency range by use of a logarithmic scale for the frequency is highly advantageous
since characteristics at low frequencies are most important in practical systems. Although
it is not possible to plot the curves right down to-zero frequency because of the
logarithmic frequency (log0 = —oo), this does not create a serious problem.

Note that the experimental determination of a transfer function can be made simple
if frequency-response data are presented in the form of a Bode diagram.
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Figure 84
 Number—decibel
conversion line.
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Basic Factors of G(jw)H(jw). As stated earlier, the main advantage in using the

_ logarithmic plot is the relative ease of plotting frequency-response curves. The basic

factors that very frequently occur in an arbitrary transfer function G(jo)H (jo) are

1. GainK

2. Integral and derivative factors (jow)™

3. First-order factors (1 + joT)™

4. Quadratic factors [1 + 2¢(jw/w,) + (jo/o,

‘Once we become familiar with the logarithmic plots of these basic factors, it is
possible to utilize them in constructing a composite logarithmic plot for any general
form of G(jw) H(jw) by sketching the curves for each factor and adding individual curves
graphically, because adding the Jogarithms of the gains corresponds to multiplying them
together.

2]=F1

The Gain K. A number greater than unity has a positive value in decibels, while a
number smaller than unity has a negative value. The log-magnitude curve for a constant
gain K is a horizontal straight line at the magnitude of 20 log K decibels. The phase angle
of the gain K is zero. The effect of varying the gain X in the transfer function is that it
raises or lowers the log-magnitude curve of the transfer function by the corresponding
constant amount, but it has no effect on the phase curve.

A number-decibel conversion line is given in Figure 8-4. The decibel value of any
number can be obtained from this line. As a number increases by a factor of 10, the
corresponding decibel value increases by a factor of 20. This may be seen from the

following: :

20log(K X 10) = 20logK + 20
Similarly,

20log(K X 10") = 20logK + 20n

20

AN

o

AN

~ Decibels (dB)
N\,

b
S

~30 /

~40 1 il { LIt i
001 002 004 01 02 0406 ! 2 3456810
Numbers
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Note that, when expressed in decibels, the reciprocal of a number differs from its value
only in sign; that is, for the number X,

20log K = —20 log—Ilg

Integral and Derivative Factors (jow)*!. The logarithmic magnitude of 1/jw in
decibels is '

1
_20 10g ]—w

' = —20logw dB

The phase angle of 1/jw is constant and equal to —90°.

In Bode diagrams, frequency ratios are expressed in terms of octaves or decades. An
octave is a frequency band from w; to 2w,, where w is any frequency value. A decade is
a frequency band from w; to 10w;, where again w, is any frequency. (On the logarithmic
scale of semilog paper, any given frequency ratio can be represented by the same hori-
zontal distance. For example, the horizontal distance from @ = 1 to w = 10 is equal to
that from v = 3 tow = 30.)

If the log magnitude —20 logw dB is plotted against w on a logarithmic scale, it is a
straight lme To draw this straight line, we need to locate one point (0 dB,w = 1) onit. Smce

(—201og 10w) dB = (—20logw ~ 20) dB

the slope of the line is —20 dB/decade (or —6 dB/octave).
Similarly, the log magnitude of jw in decibels is

20 log|jw| = 20logw dB

The phase angle of jw is constant and equal to 90°. The log-magnitude curve is a straight
line with a slope of 20 dB/decade. Figures 8-5(a) and (b) show frequency-response
curves for 1/jw and jw, respectively. We can clearly see that the differences in the
frequency responses of the factors 1/jw and jw lie in the signs of the slopes of the log-
magnitude curves and in the sigds of the phase angles. Both log magnitudes become
equalto0dB atw = 1. -

If the transfer function contains the factor (1/jw)* or (jw)", the log magnitude
becomes respectlvely,

20log = —n X 20logljw| = ~20nlogw dB

1
(Jo)"

or
201og|(jo)"| = n X 20logljw| = 20nlogw dB

The slopes of the log-magnitude curves for the factors (1/jw)" and (jw)" are thus
—20n dB/decade and 207 dB/ decade, respectively. The phase angle of (1/jw)" is equal
to—90° X_n over the entire frequency range, while that of (jw)" is equal to 90° X .n over
the entire frequency range. The magnitude curves will pass through the pomt
(0dB,w = 1).
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Figure 8-5
(a) Bode diagram of
G(jw) = 1/jo;

~ (b) Bode diagram of

G(jw) = jo.
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First-Order Factors (1 + jeT)*!. The log magnitude of the first-order factor
1/(1 + jwT)is
v /1 + 272
| 20log T ijl = -20log V1 + «*T*dB

For low frequencies, such that @ < 1/T, the log magnitude may be approximated by
~20log V1 + ?T? = -20logl = 0dB

Thus, the log-magnitude curve at low frequencies is the constant 0-dB line. For high

. frequencies, such that @ > 1 /T,

—20log V1 + «*T? = =20 logwT dB

This is an approximate expression for the high-frequency range. At w =1 /T, the log
magnitude equals 0 dB; at @ = 10/7, the log magnitude is ~20 dB. Thus, the value of
—20 log T dB decreases by 20 dB for every decade of w. For & > 1/T, the log-magnitude
curve is thus a straight line with a slope of —20 dB/decade (or —6 dB/octave).

Our analysis shows that the logarithmic representation of the frequency-response
curve of the factor 1/(1 + jwT') can be approximated by two straight-line asymptotes,
one a straight line at 0 dB for the frequency range 0 < w < 1/T and the other a straight
line with slope —20 dB/decade (or —6 dB/octave) for the frequency range 1 /T < w < oo
The exact log-magnitude curve, the asymptotes, and the exact phase-angle curve are
shown in Figure 8-6.

The frequency at which the two asymptotes meet is called the corner frequency or
break frequency. For the factor 1/(1 + jwT'), the frequency & = 1/T is the corner:fre-
quency since at w = 1/T the two asymptotes have the same value. (The low-frequency ~
asymptotic expression at w = 1/T is 20 log 1 dB = 0 dB, and the high-frequency

Chapter 8 / Frequency-Response Analysis




Figure 8-6
Log-magnitude
curve, together with
the asymptotes, and
phase-angle curve of
1/(1 + joT).
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asymptotic expression at w = 1/T is also 20 log 1 dB = 0 dB.) The corner frequency
divides the frequency-response curve into two regions: a curve for the low-frequency re-
gion and a curve for the high-frequency region. The corner frequency is very important
in sketching logarithmic frequency-response curves.

The exact phase angle ¢ of the factor 1/(1 + jwT') is

¢ = —tan T

At zero frequency, the phase angle is 0°. At the corner frequency, the phase angle is
T
¢ = —tan™ 7= —tan 'l = —45°

At infinity, the phase angle becomes —90°. Since the phase angle is given by an inverse-
tangent function, the phase angle is skew symmetric about the inflection point at
¢ = —45° _ '

The error in the magnitude curve caused by the use of asymptotes can be calculated.
The maximum error occurs at the corner frequency and is approximately equal to —3 dB
since

—20log VI ¥ 1 + 20logl = —10log2 = —3.03 dB

The error at the frequency one octave below the corner frequency, that is,at » = 1/(27T),
is

1 5
—201og, /Z +1+20logl = —20103%: =097 dB

The error at the frequency one octave above the corner frequency, that is, at o = 2/T,
is

—20log V2* + 1 + 20log2 = —20 log—\g—5 = —0.97dB
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Figure 8-7
Log-magnitude error
in the asymptotic
expression of the
frequency-response
curve of

1/(1 + jwT).
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Thus, the error at one octave below or above the corner frequency is approximately
equal to —1 dB. Similarly, the error at one decade below or above the corner frequency
is approximately —0.04 dB. The error in decibels involved in using the asymptotic ex-
pression for the frequency-response curve of 1/(1 + jwT) is shown in Figure 8-7.The
error is symmetric with respect to the corner frequency.

Since the asymptotes are quite easy to draw and are sufficiently close to the exact
curve, the use of such approximations in drawing Bode diagrams is convenient in es-
tablishing the general nature of the frequency-response characteristics quickly with a
minimum amount of calculation and may be used for most preliminary design work. If
accurate frequency-response curves are desired, corrections may easily be made by re-
ferring to the curve given in Figure 8-7. In practice, an accurate frequency-response
curve can be drawn by introducing a correction of 3 dB at the corner frequency and a
correction of 1 dB at points one octave below and above the corner frequency and then
connecting these points by a smooth curve.

Note that varying the time constant T shifts the corner frequency to the left or to the
right, but the shapes of the log-magnitude and the phase-angle curves remain the same.

" The transfer function 1/(1 + joT) has the characteristics of a low-pass filter. For

- frequencies above w = 1/T, the log magnitude falls off rapidly toward —00. This is es-

sentially due to the presence of the time constant. In the low-pass filter, the output
can follow a sinusoidal input faithfully at low frequencies. But as the input frequen-
cy is increased, the output cannot follow the input because a certain amount of time
is required for the system to build up in magnitude. Thus, at high frequencies, the
amplitude of the output approaches zero and the phase angle of the output
approaches —90°. Therefore, if the input function contains many harmonics, then the
low-frequency components are reproduced faithfully at the output, while the high-
frequency components are attenuated in amplitude and shifted in phase. Thus, a first-
order element yields exact, or almost exact, duplication only for constant or slowly
varying phenomena.

An advantage of the Bode diagram is that for reciprocal factors—for example, the
factor 1 + joT—the log-magnitude and the phase-angle curves need only be changed

in sign, since

20log|1 + jwT| = —20log 1—_;}—;;[
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" Figure 8-8
Log-magnitude
curve, together with
the asymptotes, and
phase-angle curve

-forl + jeT.

™~

and

-1
+ 7 = ~1 —
{.1 joT = tan™ T / 1+ joT

The corner frequency is the same for both cases. The slope of the high-frequency as-
ymptote of 1 + jwT is 20 dB/decade, and the phase angle varies from 0° to 90° as the fre-
quency o is increased from zero to infinity. The log-magnitude curve, together with the
asymptotes, and the phase-angle curve for the factor 1 + joT are shown in Figure 8-8.

To draw a phase curve accurately, we have to locate several points on the curve. The
phase angles of (1 + jwT)™ are '

1
F45° t ==
a W=
F26.6° at w = —1
) 2T
A 1
F5.7° = =
57 at w 10T
2
F63.4° t = —
a w T
. 10
F84.3° =
’ at w T

For the case where a given transfer function involves terms like (1 + jwT')™, a similar
asymptotic construction may be made. The corner frequency is still at @ = 1/T',and the

‘asymptotes are straight lines. The low-frequency asymptote is a horizontal straight line

~

dB )
40
20 !
]
|
0 : E
1
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L
900
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t
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at 0 dB, while the high-frequency asymptote has the slope of —20n dB/decade or
20n dB/decade. The error involved in the asymptotic expressions is » timeés that for
(1 + jwT)™. The phase angle is n times that of (1 + jwT)™ at each frequency point.

Quadratic Factors [1 + 2¢(jw/w,) + (jo/w,)?]"’. Control systems often
possess quadratic factors of the form

1

2
EENE

If £ > 1, this quadratic factor can be expressed as a product of two first-order factors

with real poles. If 0 < ¢ < 1, this quadratic factor is the product of two complex-

conjugate factors. Asymptotic approximations to the frequency-response curves are not

accurate for a factor with low values of {. This is because the magnitude and phase of

the quadratic factor depend on both the corner frequency and the damping ratio ¢{.
The asymptotic frequency-response curve may be obtained as follows: Since

G(jo) = (8-7)

20log wl — 2[ = —2010g\/(1 - -‘-a‘)’;)z + (2{;‘—:’—)2
i)+ (i) " "
for low frequencies such that w < w,, the log magnitude becomes

~20 loglh= 0dB

The low-frequency asymptote is thus a horizontal line at 0 dB. For high frequencies such
that o > w,, the log magnitude becomes ' :

wz w
—201log — = —4 —dB
og o 0 log o

_ The equation for the high-frequency asymptote is a straight line having the slop:

—40 dB/decade since
10w

Wy

—40log —2 = —40 — 40 log —

wn
The high-frequency asymptote intersects the low-frequency one at w = w, since at th-
frequency

--4010% = —40logl = 0 dB

This frequency, w,, is the corner frequency for the quadratic factor considered.

The two asymptotes just derived are independent of the value of /. Near th
frequency w = w,, a resonant peak occurs, as may be expected from Equation (8-7
The damping ratio ¢ determines the magnitude of this resonant peak. Errors obv-
ously exist in the approximation by straight-line asymptotes. The magnitude of th
error depends on the value of £. It is large for small values of {. Figure 8-9 shows th

- exact log-magnitude curves, together with the straight-line asymptotes and the exac
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- Figure 8-9
Log-magnitude
curves, together with
the asymptotes, and
phase-angle curves
of the quadratic
transfer function
given by
Equation (8-7).
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phase-angle curves for the quadratic factor given by Equation (8-7) with several values

of £. If corrections are desired in the asymptotic curves, the necessary amounts of cor-

rection at a sufficient number of frequency points may be obtained from Figure 8-9.
The phase angle of the quadratic factor |1 + 2¢{(jw/w,) + (jo/w,)’]™ is

L 2%
¢ " oy = e s (8-8)
t 24“(1(»7) * (fa:) L (z:;)

The phase angle is a function of both w and . At w = 0, the phase angle equals 0°. At
the corner frequency w = w,, the phase angle is —90° regardless of {, since

2
¢ = -tan“_l(—og—) = —tantoo = —90°

At @ = oo, the phase angle becomes —~180°. The phase-angle curve is skew symmetric
about the inflection point—the point where ¢ = ~90°. There are no simple ways to sketch

such phase curves. We need to refer to the phase-angle curves shown in Figure 8-9.
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~ The frequency-response curves for the factor

2
1 +2;(jwﬂ> + (,;‘i’—)

can be obtained by merely reversing the sign of the log magnitude and that of the phase
angle of the factor
1

2
1+ 2;(,‘;’)"-) + (,—a‘:—’)

To obtain the frequency-response curves of a given quadratic transfer function, we must
first determine the value of the corner frequency w, and that of the damping ratio {.
Then, by using the family of curves given in Figure 8-9, the frequency-response curves
can be plotted.

The Resonant Frequency w, and the Resonant Peak Value M,. The magnitude of

L 1
)6
is
1G(jo)] = - 8-9)

@2 \2 o \2
V-5) ()
If |G(jw)| has a peak value at some frequency, this frequency is called the resonant
frequency. Since the numerator of |G(jw)] is constant, a peak value of |G(jw)| will occur
when ) NS ‘
w0?\2 o \2
glw) = (1 - ";-2-) + (2{ Z):) (8-10)

is a minimum. Since Equation (8—-10) can be written

glo) = [£0 22T

the minimum value of g(w) occurs at w = w,V1 — 2¢2. Thus the resonant frequency
w, is

+4(1 -0 (8-11)

w, = w,V1 -2, for 0 = ¢ < 0.707 (8-12) -

As the damping ratio { approaches zero, the resonant frequency approaches w,. For
0 < ¢ = 0.707, the resonant frequency o, is less than the damped natural frequency
w; = @,V 1 — {?, which is exhibited in the transient response. From Equation (8-12),
it can be seen that for £ > 0.707, there is no resonant peak. The magnitude |G(jw)| de-
creases monotonically. with increasing frequency w. (The magnitude is less than 0 dB
for all values of w > 0.Recall that, for 0.7 < { < 1, the step response is oscillatory, but
the oscillations are well damped and are hardly perceptible.)
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Figure 8-10
M,-versus-{ curve for
the second-order
system °

11 + 2{jo/w,) +

(o e0,)):

For £ > 0.707,
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The magnitude of the resonant peak, M,, can be found by substituting Equation
(8-12) into Equation (8-9). For 0 = { = 0.707,
1

M, = [G(joo) max = |Gljer)] = Py ey (8-13)

M =1 (8-14)
As ¢ approaches zero, M, approaches infinity. This means that if the undamped system
is excited at its natural frequency, the magnitude of G(jw) becomes infinity. The rela-
tionship between M, and { is shown in Figure 8-10.

The phase angle of G(jw) at the frequency where the resonant peak occurs can be
obtained by substituting Equation (8-12) into Equation (8-8). Thus, at the resonant
frequency w,, ' .

) A V1=22 R
Gljw,) = —tan™ ———— =—90° + sin™ ———
L(J__) : mz

General Procedure for Plotting Bode Diagrams. MATLAB provides an easy way
to plot Bode diagrams. (See Section 8-3.) Here, however, we consider the case where we
want to draw Bode diagrams manually without using MATLAB.

First rewrite the sinusoidal transfer function G(jw)H (jw) as a product of basic factors
discussed above.Then identify the corner frequencies associated with these basic factors.
Finally, draw the asymptotic log-magnitude curves with proper slopes between the corner
frequencies. The exact curve, which lies close to the asymptotic curve, can be obtained
by adding proper corrections.

The phase-angle curve of G{jw)H (jw) can be drawn by adding the phase-angle
curves of individual factors. :

The use of Bode diagrams employing asymptotic approximations requires much less
time than other methods that may be used for computing the frequency response of a
transfer function. The ease of plotting the frequency-response curves for a given trans-
fer function and the ease of modification of the frequency-response curve as
compensation is added are the main reasons why Bode diagrams are very frequently
used in practice. ' ‘ '
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~ The frequency-response curves for the factor

2
1 +2;(;wﬂ> ¥ (,;‘"—)

can be obtained by merely reversing the sign of the log magnitude and that of the phase
angle of the factor
1

’ 2
o)« (1)

To obtain the frequency-response curves of a given quadratic transfer function, we must
first determine the value of the corner frequency w, and that of the damping ratio {.
Then, by using the family of curves given in Figure 8-9, the frequency-response curves
can be plotted.

The Resonant Frequency «, and the Resonant Peak Value M,. The magnitude of

o 1
) 2y
is
IG(jw)] = = - (8-9)

=R

If IG( jw)| has a peak value at some frequency, this frequency is called the resonant
frequency. Since the numerator of }G( j) ?13 constant, a peak value of |G(jw)| will occur

when
glw) = (1 - ;“’;)2 + (zg wﬂ)z (8-10)

n

is a minimum. Since Equation (8—10) can be written
o - (1 - 20072 ’
gw) = | Sk )] +ap(l - ) (-11)

the minimum value of g{w) occurs at w = w, V1 ~ 2£2. Thus the resonant frequency
w, is

w, = w,V1 -2, for 0 = ¢ = 0.707 (8-12) -

As the damping ratio { approaches zero, the resonant frequency approaches w,,. For
0 < ¢ = 0.707, the resonant frequency o, is less than the damped natural frequency
w; = w,V'1.— {*, which is exhibited in the transient response. From Equation (8-12),
it can be seen that for £ > 0.707, there is no resonant peak. The magnitude |G(jw)| de-
creases monotonically with increasing frequency w. (The magnitude is less than 0 dB
for all values of w > 0.Recall that, for 0.7 < { < 1, the step response is oscillatory, but
the oscillations are well damped and are hardly perceptible.)
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The magnitude of the resonant peak, M,, can be found by substituting Equation
(8-12) into Equation (8-9).For 0 = { = 0.707,
1

M, = |G o) = [GUwr) = 775

M =1 (8-14)

As ¢ approaches zero, M, approaches infinity. This means that if the undamped system

is excited at its natural frequency, the magnitude of G(jw) becomes 1nf1mty The rela-
tionship between M, and ¢ is shown in Figure 8-10.

The phase angle of G(jw) at the frequency where the resonant peak occurs can be

obtained by substltutmg Equation (8-12) into Equation (8-8). Thus, at the resonant

frequency w,, '
Gljw,) = —tan™ _____vl——2(,'2 =~90° + sin™! _ &
r g /——'—”"1 _ §2

General Procedure for Plotting Bode Diagrams. MATLAB provides an easy way
to plot Bode diagrams. (See Section 8-3.) Here, however, we consider the case where we
want to draw Bode diagrams manually without using MATLAB.

First rewrite the sinusoidal transfer function G{jw)H (jw) as a product of basic factors
discussed above.Then identify the corner frequencies associated with these basic factors.
Finally, draw the asymptotic log-magnitude curves with proper slopes between the corner
frequencies. The exact curve, which lies close to the asymptotic curve, can be obtained
by adding proper corrections.

The phase-angle curve of G{jw)H (jw) can be drawn by adding the phase-angle
curves of individual factors.

The use of Bode diagrams employing asymptotic approximations requires much less
time than other methods that may be used for computing the frequency response of a
transfer function. The ease of plotting the frequency-response curves for a given trans-
fer function and the ease of modification of the frequency-response curve as
compensation is added are the main reasons why Bode d1agrams are very frequently
used in practice.

(8-13)

For ¢ > 0.707,
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LE 8-5 . Draw the Bode diagram for the following transfer function:

A\ 10(jw + 3)
(jo)(joo + 2)[(jw)? + jeo + 2]

G( jw) =

Make corrections so that the log-magnitude curve is accurate.

To avoid any possible mistakes in drawing the log-magnitude curve, it is desirable to put G(jw)
in the following normalized form, where the low-frequency asymptotes for the first-order factors
and the second-order factor are the 0-dB line:

i
7.5( 3+ 1)

(iw)(%w + 1)[9—;I + ’7‘" + 1]

G(jw) =

This function is composed of the following factors:

- L@ , L e\ o (o) ]—l
7.5, (jo)™, 1+]3, (1+/2), {l+/2+ 5
The corner frequencies of the third, fourth, and fifth terms are w = 3,0 = 2,and @ = V2,
respectively. Note that the last term has the damping ratio of 0.3536.

To plot the Bode diagram, the separate asymptotic curves for each of the factors are shown
in Figure 8-11. The composite curve is then obtained by algebraically adding the individual curves,
also shown in Figure 8-11. Note that when the individual asymptotic curves are added at each fre-
quency, the slope of the composite curve is cumulative. Below w = V2, the plot has the slope of
—20 dB/decade. At the first corner frequency @ = V2, the slope changes to —60 dB/decade and
continues to the next corner frequency = 2, where the slope becomes —80 dB/decade. At the
last corner frequency @ = 3, the slope changes to —60 dB/decade. '

Once such an approximate log-magnitude curve has beéen drawn, the actual curve can be
obtained by adding corrections at each corner frequency and at frequencies one octave below
and above the corner frequencies. For first-order factors (1 + joT)™, the corrections are +3 dB
at the corner frequency and +1 dB at the frequencies one octave below and above the corner
frequency. Corrections necessary for the quadratic factor are obtained from Figure 8-9.The exact
log-magnitude curve for G(jw) is shown by a dashed curve in Figure 8-11.

Note that any change in the slope of the magnitude curve is made only at the corner
frequencies of the transfer function G(jw). Therefore, instead of drawing individual magpitude
curves and adding them up, as shown, we may sketch the magnitude curve without sketching
individual curves. We may start drawing the lowest-frequency portion of the straight line (that
is, the straight line with the slope —20 dB/decade for w < V2). As the frequency is increased,
we get the effect of the complex-conjugate poles (quadratic term) at the corner frequency
w = V2 .The complex-conjugate poles cause the slopes of the magnitude curve to change from
—20 to —60 dB/decade. At the next corner frequency,w = 2, the effect of the pole is to change
the slope to —80 dB/decade. Finally, at the corner frequency @ = 3, the effect of the zero is to
change the slope from —80'to —60 dB/decade.

For plotting the complete phase-angle curve, the phase-angle curves for all factors have to be
sketched. The algebraic sum of all phase-angle curves provides the complete phase-angle curve,
as shown in Figure 8-11.
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Figure 8-11

Bode diagram of the
system considered in
Example 8-3.
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Minimum-Phase Systems and Nonminimum-Phase Systems. Transfer func-
tions having neither poles nor zeros in the right-half s plane are minimum-phase trans-
fer functions, whereas those having poles and/or zeros in the right-half s plane are
nonminimum-phase transfer functions. Systems with minimum-phase transfer functions

are called minimum-phase systems, whereas those with nonminimum-phase tranifer'

functions are called nonminimum-phase systems.
 For systems with the same magmtude characteristic, the range in phase angle of the
minimum-phase transfer function is minimum among all such systems, while the range in
phase angle of any nonminimum-phase transfer function is greater than this minimum.
It is noted that for a minimum-phase system, the transfer function can be uniquely
determined from the magnitude curve alone. For a nonminimum-phase system, this is
not the case. Multiplying any transfer function by all-pass fﬁters does not alter the
magnitude curve, but the phase curve.is changed.
Consider as an example the two systems whose sinusoidal transfer functions are,
respectively;
1+ juT : 1~ joT
Gjo) = {oier:  Gle) =T O0<T<T
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A6 , * Sketch the root loci of the control system shown in Figure 6-40(a).

B - " ° 7 7 Solution. "Thé open-loop poles are locatedats = 0,5 = —3 + j4,and 5 = -3 — j4. A root locus
branch exists on the real axis between the origin and —oo. There are three asymptotes for the root
loci. The angles of asymptotes are . ’

+180°(2k + 1)

Angles of asymptotes = I —— 60°, —60°, 180°
Referring to Equation (6-13), the intersection of the asymptotes and the real axis is obtained as
0+3+3
=——— )
3
Next we check the breakaway and break-in points. For this system we have
. = —s(s? + 65 + 25)
. ' Now we set’
-«

%=—(3sz+12s+25)——70

. which yields
s = -2+ j2.0817, s = -2 — j2.0817
K=68 K=34
ey -
-7 -6 -5 -4 4
K —_—
3(s? + 63 +25)
@ ' o
Figure 6-40 '

(a) Control system,; (b) root-locus plot.
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Notice that at points s = —2 + j2.0817 the angle condition is not sat’.iied. Hence, they are nei-
ther breakaway nor break-in points. In fact, if we calculate the value. of K, we obtain
K = ~s(s® + 63 + 25) 34 + j18.04
) . s=-2%j2.0817 . - .
(To be an actual breakaway or break-in point, the corre'sponding value of K miust be real and
positive.)
The angle of departure from the complex pole in the upper half s plane is

6.= 180° — 126.87° — 90°

or
6 = —36.87°

The points where root-locus branches cross the imaginary axis may be found by substituting
s = jo into the characteristic equation and solving the equation for @ and K as follows: Noting
that the characteristic equation is

S +62+255+K=0
we have
(jw)® + 6(jw)? + 25(jw) + K = (—6a? + K) + ju(25 = o’} =0
which yields )
w = £5, K =150 or w =0, K=0

Root-locus branches cross the imaginary axis at @ = 5 and @ = —5.The value of gain K at the
crossing points is 150. Also, the root-locus branch on the real axis touches the imaginary axis at
w = 0. Figure 6-40(b) shows a root-locus plot for the system.

It is noted that if the order of the numerator of G(s)H(s) is lower than that of the denomi-
nator by two or more, and if some of the closed-loop poles move on the root locus toward the right
as gain K is iricreased, then other closed-loop poles must move toward the left as gain K is in-
creased. This fact can be seen clearly in this problem. If the gain K is increased from K = 34to
K = 68, the complex-conjugate closed-loop poles are moved from s = —2 + j3.65tos = —1 + j4;
the third pole is moved from s = —2 (which corresponds to K = 34) to s = —4 (which corre-
sponds to K = 68).Thus, the movements of two complex-conjugate closed-loop poles to the right
by one unit cause the remaining closed-loop pole (real pole in this case) to move to the left by two
units. - .

Consider the system shown in Figure 6-41(a). Sketch the root loci for the system. Observe that
for small or large values of K the system is underdamped and for medium values of X it is
overdamped.

Solution. A root locus exists on the real axis between the origin and —co. The angles of asymp-
totes of the root-locus branches are obtained as

+180°(2k + 1) _

3 60°, —60°, ~180°

Angles of asymptotes =

The intersection of the asymptotes and the real axis is located on the real axis at

04242 _
3

~1.3333
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